3. [9 points] Throughout this problem, let $f(x) = \sin x + \cos x$. For reference, you may use the graphs of sine and cosine given below, but note that neither of these is a graph of f, since f is their sum.

a. [1 point] Give a formula for the derivative of f(x).

Answer: f'(x) = ______

- **b.** [2 points] On which of the following intervals is f(x) increasing? Circle all correct answers.
 - $\left(0,\frac{\pi}{4}\right)$ $\left(\frac{3\pi}{4},\frac{5\pi}{4}\right)$ $\left(\frac{5\pi}{4},\frac{7\pi}{4}\right)$ $\left(\frac{7\pi}{4},2\pi\right)$ None of these
- c. [2 points] On which of the following intervals is f(x) concave down? Circle all correct answers.
 - $\left(0,\frac{\pi}{4}\right)$ $\left(\frac{3\pi}{4},\frac{5\pi}{4}\right)$ $\left(\frac{5\pi}{4},\frac{7\pi}{4}\right)$ $\left(\frac{7\pi}{4},2\pi\right)$ None of these
- d. [4 points] Find and classify all local extrema of f(x) on the interval $(0, 2\pi)$. If there are none of a particular type, write NONE. Use calculus to find and justify your answers, and show all your work.