3. [9 points] Throughout this problem, let $f(x)=\sin x+\cos x$. For reference, you may use the graphs of sine and cosine given below, but note that neither of these is a graph of f, since f is their sum.

a. [1 point] Give a formula for the derivative of $f(x)$.

Answer: $\quad f^{\prime}(x)=$ \qquad
b. [2 points] On which of the following intervals is $f(x)$ increasing? Circle all correct answers.

$$
\left(0, \frac{\pi}{4}\right) \quad\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right) \quad\left(\frac{5 \pi}{4}, \frac{7 \pi}{4}\right) \quad\left(\frac{7 \pi}{4}, 2 \pi\right) \quad \text { NONE OF THESE }
$$

c. [2 points] On which of the following intervals is $f(x)$ concave down? Circle all correct answers.

$$
\left(0, \frac{\pi}{4}\right) \quad\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right) \quad\left(\frac{5 \pi}{4}, \frac{7 \pi}{4}\right) \quad\left(\frac{7 \pi}{4}, 2 \pi\right) \quad \text { NONE OF THESE }
$$

d. [4 points] Find and classify all local extrema of $f(x)$ on the interval $(0,2 \pi)$. If there are none of a particular type, write NONE. Use calculus to find and justify your answers, and show all your work.

Answer: Local min(s) at $x=$ \qquad and Local max(es) at $x=$ \qquad

