5. [4 points] Shown below are portions of the graphs of $y=f(x), y=f^{\prime}(x)$, and $y=f^{\prime \prime}(x)$. Note that the dotted graph has a vertical asymptote at $x=0$. Determine which graph is which, and then, on the answer lines below, indicate after each function the letter A, B, or C that corresponds to its graph. No work or justification is needed.

Answer: $f(x):$
$f^{\prime}(x):$ \qquad $f^{\prime \prime}(x)$: \qquad
6. [7 points] The function $q(x)$ is given by the following formula, where c and m are constants:

$$
q(x)= \begin{cases}c-4 x-x^{2} & -3 \leq x \leq 0 \\ m x & 0<x \leq 2\end{cases}
$$

a. [4 points] Assuming $c=-3$ and $m=2$, find the x-values of all global minima and global maxima of $q(x)$ on the interval $[-3,2]$. If there are none of a particular type, write none. Use calculus to find and justify your answers, and show your work.

Answer: Global min(s) at $x=$ \qquad and Global max(es) at $x=$ \qquad
b. [3 points] Find one pair of values for c and m such that $q(x)$ is differentiable at $x=0$. Show your work.

Answer: $c=$ \qquad and $m=$ \qquad

