5. [4 points] Shown below are portions of the graphs of \(y = f(x) \), \(y = f'(x) \), and \(y = f''(x) \). Note that the dotted graph has a vertical asymptote at \(x = 0 \). Determine which graph is which, and then, on the answer lines below, indicate after each function the letter A, B, or C that corresponds to its graph. No work or justification is needed.

\[
\begin{align*}
A & \quad y = f(x) \\
B & \quad y = f'(x) \\
C & \quad y = f''(x)
\end{align*}
\]

Answer: \(f(x) : \) ________

\(f'(x) : \) ________

\(f''(x) : \) ________

6. [7 points] The function \(q(x) \) is given by the following formula, where \(c \) and \(m \) are constants:

\[
q(x) = \begin{cases}
 c - 4x - x^2 & -3 \leq x \leq 0 \\
 mx & 0 < x \leq 2.
\end{cases}
\]

a. [4 points] Assuming \(c = -3 \) and \(m = 2 \), find the \(x \)-values of all global minima and global maxima of \(q(x) \) on the interval \([-3, 2]\). If there are none of a particular type, write NONE. Use calculus to find and justify your answers, and show your work.

Answer: Global min(s) at \(x = \) ________ and Global max(es) at \(x = \) ________

b. [3 points] Find one pair of values for \(c \) and \(m \) such that \(q(x) \) is differentiable at \(x = 0 \). Show your work.

Answer: \(c = \) __________ and \(m = \) __________