8. [6 points] The equation \(x^2 + xy + 2y^2 = 28 \) defines \(y \) implicitly as a function of \(x \).
 a. [4 points] Compute \(\frac{dy}{dx} \). Show every step of your work.

 Answer:

 b. [2 points] Find an equation of the line tangent to the curve defined by \(x^2 + xy + 2y^2 = 28 \) at the point \((2, 3)\).

 Answer:

9. [6 points] The equation \(x + \frac{1}{3}y^3 - y = 1 \) implicitly defines \(x \) and \(y \) as functions of each other. Implicitly differentiating this equation with respect to \(x \) and solving for \(\frac{dy}{dx} \) gives

 \[
 \frac{dy}{dx} = \frac{-1}{y^2 - 1}.
 \]

 Let \(C \) be the graph of the equation \(x + \frac{1}{3}y^3 - y = 1 \). Note that all points listed as possible answers below do actually lie on the graph \(C \).

 a. [2 points] Circle all points below at which the line tangent to \(C \) is horizontal.

 \(-5, 3\) \hspace{1cm} \left(\frac{1}{3}, -1\right) \hspace{1cm} (1, 0) \hspace{1cm} \left(1 + \frac{\sqrt{2}}{3}, \sqrt{2}\right) \hspace{1cm} \left(\frac{5}{3}, 1\right) \hspace{1cm} \text{NONE OF THESE}

 b. [2 points] Circle all points below at which the line tangent to \(C \) is vertical.

 \(-5, 3\) \hspace{1cm} \left(\frac{1}{3}, -1\right) \hspace{1cm} (1, 0) \hspace{1cm} \left(1 + \frac{\sqrt{2}}{3}, \sqrt{2}\right) \hspace{1cm} \left(\frac{5}{3}, 1\right) \hspace{1cm} \text{NONE OF THESE}

 c. [2 points] Circle all points below at which \(\frac{dy}{dx} \) and \(\frac{dx}{dy} \) are equal to each other.

 \(-5, 3\) \hspace{1cm} \left(\frac{1}{3}, -1\right) \hspace{1cm} (1, 0) \hspace{1cm} \left(1 + \frac{\sqrt{2}}{3}, \sqrt{2}\right) \hspace{1cm} \left(\frac{5}{3}, 1\right) \hspace{1cm} \text{NONE OF THESE}