8. [6 points] The equation $x^{2}+x y+2 y^{2}=28$ defines y implicitly as a function of x.
a. [4 points] Compute $\frac{d y}{d x}$. Show every step of your work.

Answer: \qquad
b. [2 points] Find an equation of the line tangent to the curve defined by $x^{2}+x y+2 y^{2}=28$ at the point $(2,3)$.

Answer:

9. [6 points] The equation $x+\frac{1}{3} y^{3}-y=1$ implicitly defines x and y as functions of each other. Implicitly differentiating this equation with respect to x and solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=\frac{-1}{y^{2}-1} .
$$

Let \mathcal{C} be the graph of the equation $x+\frac{1}{3} y^{3}-y=1$. Note that all points listed as possible answers below do actually lie on the graph \mathcal{C}.
a. [2 points] Circle all points below at which the line tangent to \mathcal{C} is horizontal.

$$
(-5,3) \quad\left(\frac{1}{3},-1\right) \quad(1,0) \quad\left(1+\frac{\sqrt{2}}{3}, \sqrt{2}\right) \quad\left(\frac{5}{3}, 1\right) \quad \text { NONE OF THESE }
$$

b. [2 points] Circle all points below at which the line tangent to \mathcal{C} is vertical.

$$
(-5,3) \quad\left(\frac{1}{3},-1\right) \quad(1,0) \quad\left(1+\frac{\sqrt{2}}{3}, \sqrt{2}\right) \quad\left(\frac{5}{3}, 1\right) \quad \text { NONE OF THESE }
$$

c. [2 points] Circle all points below at which $\frac{d y}{d x}$ and $\frac{d x}{d y}$ are equal to each other.

$$
(-5,3) \quad\left(\frac{1}{3},-1\right) \quad(1,0) \quad\left(1+\frac{\sqrt{2}}{3}, \sqrt{2}\right) \quad\left(\frac{5}{3}, 1\right) \quad \text { NONE OF THESE }
$$

