- 8. [6 points] The equation $x^2 + xy + 2y^2 = 28$ defines y implicitly as a function of x.
 - **a**. [4 points] Compute $\frac{dy}{dx}$. Show every step of your work.

Answer:

b. [2 points] Find an equation of the line tangent to the curve defined by $x^2 + xy + 2y^2 = 28$ at the point (2, 3).

Answer:

9. [6 points] The equation $x + \frac{1}{3}y^3 - y = 1$ implicitly defines x and y as functions of each other. Implicitly differentiating this equation with respect to x and solving for $\frac{dy}{dx}$ gives

$$\frac{dy}{dx} = \frac{-1}{y^2 - 1}$$

Let C be the graph of the equation $x + \frac{1}{3}y^3 - y = 1$. Note that all points listed as possible answers below <u>do</u> actually lie on the graph C.

a. [2 points] Circle all points below at which the line tangent to C is *horizontal*.

$$(-5,3)$$
 $(\frac{1}{3},-1)$ $(1,0)$ $(1+\frac{\sqrt{2}}{3},\sqrt{2})$ $(\frac{5}{3},1)$ None of these

- **b**. [2 points] Circle all points below at which the line tangent to C is *vertical*.
 - (-5,3) $(\frac{1}{3},-1)$ (1,0) $(1+\frac{\sqrt{2}}{3},\sqrt{2})$ $(\frac{5}{3},1)$ None of these

c. [2 points] Circle all points below at which $\frac{dy}{dx}$ and $\frac{dx}{dy}$ are equal to each other.

(-5,3) $(\frac{1}{3},-1)$ (1,0) $(1+\frac{\sqrt{2}}{3},\sqrt{2})$ $(\frac{5}{3},1)$ None of these