10. [12 points] Suppose $w(t)$ is a continuous function, defined on the interval $(-4,4)$. A graph of the derivative $w^{\prime}(t)$ is given below.

a. [2 points] Circle all points below that are critical points of $w(t)$.

$$
t=-3 \quad t=-2 \quad t=1 \quad t=2 \quad t=3 \quad \text { NONE OF THESE }
$$

b. [2 points] Circle all points below that are critical points of $w^{\prime}(t)$.

$$
\begin{array}{lllll}
t=-3 & t=-2 & t=1 & t=2 & t=3
\end{array} \quad \text { NONE OF THESE }
$$

c. [2 points] Circle all points below that are local minima of $w(t)$.

$$
t=-3 \quad t=-2 \quad t=-1 \quad t=1 \quad t=2 \quad \text { NONE OF THESE }
$$

d. [2 points] Circle all points below that are local maxima of $w(t)$.

$$
t=-3 \quad t=-2 \quad t=-1 \quad t=1 \quad t=2 \quad \text { NONE OF THESE }
$$

e. [2 points] Circle all points below that are inflection points of $w(t)$.

$$
t=-3 \quad t=-2 \quad t=1 \quad t=2 \quad t=3 \quad \text { NONE OF THESE }
$$

f. [1 point] Circle all points below that are global maxima of $w^{\prime}(t)$ on the interval $(-4,4)$.

$$
t=-4 \quad t=-2 \quad t=1 \quad t=2 \quad t=3 \quad \text { NONE OF THESE }
$$

g. [1 point] Circle all points below that are global minima of $w^{\prime}(t)$ on the interval $(-4,4)$.

$$
t=-4 \quad t=-2 \quad t=1 \quad t=2 \quad t=3 \quad \text { NONE OF THESE }
$$

