2. [8 points] Throughout this problem, let $K(x)=e^{x}-e x$. In case it is helpful, $e \approx 2.7$.
a. [1 point] Find a formula for $K^{\prime}(x)$.

Answer: $K^{\prime}(x)=\quad e^{x}-e$
b. [4 points] Find the x-coordinate of all global minimum(s) and global maximum(s) of $K(x)$ on the interval $[0,3]$. If there are none of a particular type, write NONE. Use calculus to find your answers, and make sure that you show enough evidence to justify your conclusions.

Solution: Since $K^{\prime}(x)=e^{x}-e$, we have that $K^{\prime}(x)=0$ exactly when $x=1$, which is within our domain. Since $K(x)$ is continuous on [0,3], it must have a global max and min on $[0,3]$ by the Extreme Value Theorem, and these must occur at the critical point $x=1$ or at an endpoint of $[0,3]$. Since $K(0)=1, K(1)=0$, and $K(3)=e^{3}-3 e=e\left(e^{2}-3\right)>2\left(2^{2}-3\right)=2$, we see that $K(x)$ has a min at $x=1$ and a max at $x=3$ on the interval $[0,3]$.

c. [2 points] Find the linear approximation $L(x)$ of the function $K(x)$ at the point $x=0$.

Solution: The linear approximation $L(x)$ of the function $K(x)$ at the point $x=0$ is

$$
L(x)=K(0)+K^{\prime}(0)(x-0)=1+(1-e) x .
$$

Answer: $\quad L(x)=1+(1-e) x$
d. [1 point] If you were to use the linear approximation that you found in part c. to estimate $K(0.1)$, would the approximation give you an underestimate or overestimate of the true value of $K(0.1)$? Circle the correct answer, or circle NEI if there is not enough information to decide.

$$
\begin{array}{|lll}
\hline \text { UNDERESTIMATE } & \text { OVERESTIMATE NEI } \\
\hline
\end{array}
$$

Solution: Since $K^{\prime \prime}(x)=e^{x}>0$ for all x, the function $K(x)$ is concave up everywhere, so any linear approximation to $K(x)$ will always give underestimates.

