3. [9 points] Throughout this problem, let $f(x)=\sin x+\cos x$. For reference, you may use the graphs of sine and cosine given below, but note that neither of these is a graph of f, since f is their sum.

a. [1 point] Give a formula for the derivative of $f(x)$.

$$
\text { Answer: } f^{\prime}(x)=\frac{\cos x-\sin x}{}
$$

b. [2 points] On which of the following intervals is $f(x)$ increasing? Circle all correct answers.

$$
\begin{array}{llll}
\hline\left(0, \frac{\pi}{4}\right) & \left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right) & \left(\frac{5 \pi}{4}, \frac{7 \pi}{4}\right) & \left(\frac{7 \pi}{4}, 2 \pi\right) \\
\text { NONE OF THESE }
\end{array}
$$

c. [2 points] On which of the following intervals is $f(x)$ concave down? Circle all correct answers.
$\left(0, \frac{\pi}{4}\right) \quad\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right) \quad\left(\frac{5 \pi}{4}, \frac{7 \pi}{4}\right) \quad\left(\frac{7 \pi}{4}, 2 \pi\right) \quad$ NONE OF THESE
d. [4 points] Find and classify all local extrema of $f(x)$ on the interval $(0,2 \pi)$. If there are none of a particular type, write NONE. Use calculus to find and justify your answers, and show all your work.

Solution: Since $f(x)$ is differentiable and $(0,2 \pi)$ does not contains its endpoints, any local extremum of $f(x)$ on $(0,2 \pi)$ must occur at a point where $f^{\prime}(x)=0$, that is, where $\cos (x)=$ $\sin (x)$. From the graph we see that this happens only at $x=\pi / 4$ and $x=5 \pi / 4$. Since $f^{\prime \prime}(x)=-\sin x-\cos x=-f(x)$, from the graph we see that $f^{\prime \prime}\left(\frac{\pi}{4}\right)<0$ and $f^{\prime \prime}\left(\frac{5 \pi}{4}\right)>0$, so $\frac{\pi}{4}$ is a local max and $\frac{5 \pi}{4}$ is a local min by the Second Derivative Test.

Answer: Local $\min (\mathrm{s})$ at $x=\frac{\frac{5 \pi}{4}}{} \quad$ and \quad Local max(es) at $x=\frac{\frac{\pi}{4}}{4}$

