5. [4 points] Shown below are portions of the graphs of $y=f(x), y=f^{\prime}(x)$, and $y=f^{\prime \prime}(x)$. Note that the dotted graph has a vertical asymptote at $x=0$. Determine which graph is which, and then, on the answer lines below, indicate after each function the letter A, B, or C that corresponds to its graph. No work or justification is needed.

Answer: | | $f(x): \ldots \mathrm{A}$ |
| ---: | :--- |
| | $f^{\prime}(x): \ldots \mathrm{C}$ |
| | $f^{\prime \prime}(x):$ |

6. [7 points] The function $q(x)$ is given by the following formula, where c and m are constants:

$$
q(x)= \begin{cases}c-4 x-x^{2} & -3 \leq x \leq 0 \\ m x & 0<x \leq 2\end{cases}
$$

a. [4 points] Assuming $c=-3$ and $m=2$, find the x-values of all global minima and global maxima of $q(x)$ on the interval $[-3,2]$. If there are none of a particular type, write none. Use calculus to find and justify your answers, and show your work.

Solution: On $(-3,0)$ we have $q^{\prime}(x)=-4-2 x$, so the only critical point of $q(x)$ on $(-3,0)$ is $x=-2$. Since q is continuous on $[-3,0]$ and we have $q(-3)=0, q(-2)=1$, and $q(0)=-3$, we see that, on the interval $[-3,0], q(x)$ has a max of 1 at -2 and a min of -3 at 0 .
Now we check $(0,2]$. On $(0,2], q(x)$ is linear with slope 2 , so the max value of $q(x)$ on $(0,2]$ is $q(2)=4$, and we have $q(x)>\lim _{x \rightarrow 0^{+}} q(x)=0$ for all $0<x \leq 2$.
Putting this all together, we find that on the interval $[-3,2]$, the function $q(x)$ has a global maximum of 4 at $x=2$, and a global minimum of -3 at $x=0$.

Answer: Global $\min (\mathrm{s})$ at $x=\quad 0$
and Global max(es) at $x=$ \qquad
b. [3 points] Find one pair of values for c and m such that $q(x)$ is differentiable at $x=0$. Show your work.

Solution: To be differentiable at $x=0$, the function $q(x)$ must be continuous at 0 , which means

$$
c-4 \cdot 0-0^{2}=m \cdot 0,
$$

that is, $c=0$. But we will also need the derivative of $c-4 x-x^{2}$ at zero to equal the derivative of $m x$ at zero. Thus $-4-2 \cdot 0=m$, so $m=-4$.

Answer: $c=\square \quad$ and $\quad m=\square \quad-4$

