8. [6 points] The equation $x^{2}+x y+2 y^{2}=28$ defines $y$ implicitly as a function of $x$.
a. [4 points] Compute $\frac{d y}{d x}$. Show every step of your work.

Solution: Implicitly differentiating the equation $x^{2}+x y+2 y^{2}=28$ with respect to $x$ gives:

$$
2 x+y+x \frac{d y}{d x}+4 y \frac{d y}{d x}=0 .
$$

Now collect like terms, and solve for $\frac{d y}{d x}$ :

$$
\frac{d y}{d x}(x+4 y)=-2 x-y, \quad \text { so } \quad \frac{d y}{d x}=\frac{-2 x-y}{x+4 y} .
$$

Answer:

$$
\frac{d y}{d x}=\frac{-2 x-y}{x+4 y}
$$

b. [2 points] Find an equation of the line tangent to the curve defined by $x^{2}+x y+2 y^{2}=28$ at the point $(2,3)$.

Solution: Using point-slope form, the tangent line will have equation $y-3=m(x-2)$, where $m$ is the slope. And, using part (a), the slope of the tangent line at $(2,3)$ is

$$
m=\left.\frac{d y}{d x}\right|_{(x, y)=(2,3)}=\frac{-2(2)-3}{2+4(3)}=\frac{-7}{14}=-\frac{1}{2} .
$$

So the line has equation $y-3=-\frac{1}{2}(x-2)$.

## Answer:

$$
y-3=-\frac{1}{2}(x-2)
$$

9. [6 points] The equation $x+\frac{1}{3} y^{3}-y=1$ implicitly defines $x$ and $y$ as functions of each other. Implicitly differentiating this equation with respect to $x$ and solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=\frac{-1}{y^{2}-1} .
$$

Let $\mathcal{C}$ be the graph of the equation $x+\frac{1}{3} y^{3}-y=1$. Note that all points listed as possible answers below do actually lie on the graph $\mathcal{C}$.
a. [2 points] Circle all points below at which the line tangent to $\mathcal{C}$ is horizontal.

$$
(-5,3) \quad\left(\frac{1}{3},-1\right) \quad(1,0) \quad\left(1+\frac{\sqrt{2}}{3}, \sqrt{2}\right) \quad\left(\frac{5}{3}, 1\right) \quad \text { NONE OF THESE }
$$

b. [2 points] Circle all points below at which the line tangent to $\mathcal{C}$ is vertical.

$$
(-5,3) \quad\left(\frac{1}{3},-1\right) \quad(1,0) \quad\left(1+\frac{\sqrt{2}}{3}, \sqrt{2}\right) \quad\left(\frac{5}{3}, 1\right) \quad \text { NONE OF THESE }
$$

c. [2 points] Circle all points below at which $\frac{d y}{d x}$ and $\frac{d x}{d y}$ are equal to each other.

$$
\begin{array}{lll}
(-5,3) & \left(\frac{1}{3},-1\right) & (1,0) \\
\left(1+\frac{\sqrt{2}}{3}, \sqrt{2}\right) \quad\left(\frac{5}{3}, 1\right) \quad \text { NONE OF THESE }
\end{array}
$$

Solution: $\quad \frac{d y}{d x}=\frac{d x}{d y}$ when $\frac{-1}{y^{2}-1}=\frac{y^{2}-1}{-1}$, which happens when $\left(y^{2}-1\right)^{2}=1$. Thus $y^{2}=2$ or $y^{2}=0$, which means $y=0$ or $y= \pm \sqrt{2}$.

