10. [9 points] A table of some values of the function f(x) and its first and second derivatives is given below. The functions f(x), f'(x), and f''(x) are continuous everywhere.

x	-4	-3	-2	-1	0	1	2	3	4	5
f(x)	-0.6	0	-0.3	-2	-3	-1	0	3	88	204
f'(x)	3	0	-1	-2	0	2	0	9	80	0
f''(x)	-8	0	-2	0	4	0	0	22	0	-74

Assume that the critical points of f(x) and f'(x) are as follows, with no additional critical points besides those listed:

critical points of f(x): -3, 0, 2, 5 critical points of f'(x): -3, -1, 1, 2, 4

a. [4 points] Find all local extrema of f(x), and classify each as a max or a min. If there are none of a particular type, write NONE. No justification is necessary, although limited partial credit may be awarded for work shown.

Answer: Local min(s) at x =_____

Answer: Local max(es) at $x = _$

b. [3 points] Find all global extrema of f(x) on the interval [-4, 3], and classify each as a max or a min. If there are none of a particular type, write NONE. No justification is necessary, although limited partial credit may be awarded for work shown.

Answer: Global min(s) at x = _____

Answer: Global max(es) at x =____

c. [2 points] Circle all intervals below on which f(x) must be <u>concave down</u> on the entire interval.

(-4, -2) (-3, -1) (-1, 0) (4, 5) $(5, \infty)$ none of these