10. [9 points] A table of some values of the function f(x) and its first and second derivatives is given below. The functions f(x), f'(x), and f''(x) are continuous everywhere.

x	-4	-3	-2	-1	0	1	2	3	4	5
f(x)	-0.6	0	-0.3	-2	-3	-1	0	3	88	204
f'(x)	3	0	-1	-2	0	2	0	9	80	0
f''(x)	-8	0	-2	0	4	0	0	22	0	-74

Assume that the critical points of f(x) and f'(x) are as follows, with no additional critical points besides those listed:

critical points of
$$f(x)$$
: $-3, 0, 2, 5$
critical points of $f'(x)$: $-3, -1, 1, 2, 4$

a. [4 points] Find all local extrema of f(x), and classify each as a max or a min. If there are none of a particular type, write NONE. No justification is necessary, although limited partial credit may be awarded for work shown.

Solution: Using the table, we can produce a sign chart for f'(x) as follows. Note that in order to determine the sign of f'(x) on $(5, \infty)$, we can apply the Second Derivative Test at x = 5 to conclude that the graph of f(x) is concave down near x = 5, so f(x) has a local max at x = 5, so f'(x) < 0 for x > 5.

From this sign chart for f'(x), the First Derivative Test tells us that f(x) has a local min at x = 0, and local maxes as x = -3 and x = 5.

Answer: Local min(s) at $x = \underline{\hspace{1cm}}$

b. [3 points] Find all global extrema of f(x) on the interval [-4,3], and classify each as a max or a min. If there are none of a particular type, write NONE. No justification is necessary, although limited partial credit may be awarded for work shown.

Solution: We just need to check the values of f(x) at the two endpoints and at all the critical points of f in the interval (-4,3). The largest of these values will be the global max of f(x) on [-4,3], and the least will be the global min. We have:

$$f(-4) = -0.6$$
, $f(-3) = 0$, $f(0) = -3$, $f(2) = 0$, $f(3) = 3$.

So f(x) has a global min at x = 0 and a global max at x = 3 on the interval [-4, 3].

Answer: Global min(s) at $x = \underline{\hspace{1cm}} 0$

c. [2 points] Circle all intervals below on which f(x) must be <u>concave down</u> on the entire interval.

(-4,-2) (-3,-1) (-1,0) (4,5) $(5,\infty)$ None of these