4. (15 points) (a) Given that \(g(x) = f(e^{-x}) \), where \(f \) is a function with \(f'(1) = 3 \) and \(f''(1) = -5 \), compute \(g'(0) \) and \(g''(0) \).

\[
\text{ANSWERS:} \quad g'(0) = \underline{}, \quad g''(0) = \underline{}
\]

(b) Show that the point \(x = 1, y = \pi/4 \) lies on the curve

\[
2 + xy = \frac{\pi}{4} + x^2 + \tan(y)
\]

and calculate \(dy/dx \) at this point.

(c) The cost function \(C(q) \) represents the cost in dollars of producing \(q \) units of some good and the revenue function \(R(q) \) represents the revenue in dollars received by selling \(q \) units of the good. If \(C'(500) = 100 \) and \(R'(500) = 125 \), should the quantity produced be increased or decreased from \(q = 500 \) in order to increase profits? Explain the reason for your answer.