2. (8 points) (a) Give the statement of the fundamental theorem of calculus.

If is continuous, and
$$F'=f$$
, then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

(b) Give a specific instance of the fundamental theorem by using the interval $-2 \le x \le 3$ and the function x^2 for one of the functions in your statement of the theorem.

the function
$$x^2$$
 for one of the functions in your statement of the theorem.

$$\int_{-3}^{3} x^2 dy = \frac{x^3}{3} \Big|_{-2}^{3} = \frac{3}{3} \frac{(-2)^3}{3} = 9 + \frac{8}{3} = \frac{35}{3}$$

or
$$\int_{-3}^{3} 2x dy = x^2 \Big|_{-2}^{3} = 9 + 4 = 5$$

3. (4 points) Suppose $f'(x) = \cos(x^2)$. Use the graph of f'(x) to decide which is larger, f(1) or f(2). Explain the reason for your answer.

regl of $cos(x^2)$ on [0,2] looks Thus f(i) > f(2), since $\int f'(x)dy = f(a) - f(i)$ would be regative
i.e. the small gasitive A, minus the larger A.