			cylindrical bucket quare inches of ste			om, but it will
m	naximum possib		the height is h , for at is this maximum.			
111	idicate your iiiia	ar answers below.				
				Optimal value	$r = \underline{\hspace{1cm}}$	
				Optimal value	$e ext{ of } h = $	

 ${\rm Maximum\ volume} = \underline{\hspace{1cm}}$