(10.) (11 points) You are designing a cylindrical bucket. The bucket must have a bottom, but it will have no lid, and you have 1000 square inches of steel sheet to use for the bucket.
If the radius of the bucket is $r$ and the height is $h$, for what values of $r$ and $h$ does the bucket have maximum possible volume? What is this maximum volume? Show all your work, and clearly indicate your final answers below.

Let $V$ be the volume of the bucket, and let $S$ be the surface area of the bucket. We have that

$$
V=\pi \cdot r^{2} \cdot h, \quad S=\pi \cdot 2 r \cdot h+\pi \cdot r^{2}
$$

Since we have 1000 square inches of sheet to work with, we have the equation

$$
1000=\pi \cdot 2 r \cdot h+\pi \cdot r^{2}
$$

which we can solve for $h$ :

$$
h=\frac{1000-\pi \cdot r^{2}}{\pi \cdot 2 r}
$$

Now we can write $V$ as a function of $r$ only:

$$
\begin{aligned}
V(r) & =\pi \cdot r^{2} \cdot\left(\frac{1000-\pi \cdot r^{2}}{\pi \cdot 2 r}\right) \\
& =500 r-\frac{\pi}{2} r^{3}
\end{aligned}
$$

Now we optimize this function:

$$
V^{\prime}(r)=500-\frac{3 \pi}{2} r^{2}=0,
$$

so $V$ has critical points at $r= \pm \sqrt{\frac{1000}{3 \pi}}$. We restrict our attention to the positive critical point. Since $V^{\prime \prime}$ is negative at this critical point, we find that this positive value of $r$ is a local maximum. Since we are only interested in values of $r$ that are nonnegative, and since $V(0)=0$, we conclude that $V\left(\sqrt{\frac{1000}{3 \pi}}\right)$ is the global maximum we seek. The final answers are obtained by plugging in $r=\sqrt{\frac{1000}{3 \pi}}$ :

$$
h=\frac{1000-\frac{1000}{3}}{\pi \cdot 2 \sqrt{\frac{1000}{3 \pi}}}=\frac{\frac{1000}{3}}{\sqrt{\frac{1000 \pi}{3}}}=\frac{1000}{3} \cdot \frac{\sqrt{3}}{\sqrt{1000 \pi}}=\sqrt{\frac{1000}{3 \pi}} .
$$

Thus, the volume is

$$
V=\pi\left(\frac{1000}{3 \pi}\right)^{\frac{3}{2}}
$$

Optimal value of $r=\sqrt{\frac{1000}{3 \pi}}$ inches
Optimal value of $h=\sqrt{\frac{1000}{3 \pi}}$ inches
Maximum volume $=\pi\left(\frac{1000}{3 \pi}\right)^{\frac{3}{2}}$ cubic inches

