(9.) (8 points) Winter is here! Soon we will have icicles. Consider an icicle in the shape of a right circular cone. The sun is causing the icicle to lengthen. As its length, h, is increasing at the rate of $0.5 \mathrm{~cm} / \mathrm{hr}$, the radius, r, of the cone is decreasing at the rate of $0.02 \mathrm{~cm} / \mathrm{hr}$. When the icicle is 12 cm long and its radius is 1 cm , is the volume of the icicle increasing or decreasing? At what rate is the volume changing? [The volume of a right circular cone is given by $V=\frac{1}{3} \pi r^{2} h$. Note that in this problem, both h and r are functions of time.]

Take the derivative of V with respect to time:

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{\pi}{3}\left(2 r \cdot \frac{d r}{d t} \cdot h+r^{2} \cdot \frac{d h}{d t}\right) \\
& =\frac{\pi}{3}\left(2 \cdot 1 \cdot(-.02) \cdot 12+1^{2} \cdot .5\right) \\
& =\frac{\pi}{3}(-.48+.5) \\
& =\frac{\pi}{3} \cdot(.02) \approx 0.0209 \mathrm{~cm}^{3} / \mathrm{hr}
\end{aligned}
$$

This number is positive, so the volume is increasing at the rate of approximately $0.02 \mathrm{~cm}^{3} / \mathrm{hr}$.

