1. (2 points each) Circle “True” or “False” for each of the following problems. Circle “True” only if the statement is always true. No explanation is necessary.

(a) Suppose that a differentiable function \(h \) and its derivative, \(h' \), are continuous. If \(h'(x) < 0 \) for all \(a \leq x \leq b \) then every left-hand sum estimate of \(\int_a^b h(x)dx \) will be an overestimate.

True False

(b) For \(f(x) \) a continuous function, \(\int_{-1}^{1} f(x)dx = 2 \int_0^{1} f(x)dx. \)

True False

(c) If \(\int_0^{3} f(x)dx = 5 \), then \(\int_0^{3} 3f(x)dx = 15. \)

True False

(d) If \(Z(t) \) is an anti-derivative for \(z(t) \), then \(Z(t + 5) \) is also an anti-derivative for \(z(t) \).

True False

2. (3 points each) Explain in words what the following represent:

(a) \(\int_2^{6} f(t)dt \) where \(f(t) \) is the rate at which people are lining up outside of Target waiting for the store to open at 6 am, where \(t \) is in hours after midnight on the day after Thanksgiving,

\[\int_2^{6} f(t)dt \] is the total number of people who line up between 2:00 AM and 6:00AM.

(b) \(\int_0^{4} a(t)dt \) where \(a(t) \) is acceleration of an object in \(\text{ft/sec}^2 \) and \(t \) is in seconds

\[\int_0^{4} a(t)dt \] is the total change in velocity (in feet per second) of the object between the times \(t = 0 \) and \(t = 4. \)

(c) \(\frac{1}{4} \int_5^{9} r(t)dt \) where \(r(t) \) is rainfall in inches per hour and \(t \) is in hours since noon

\[\frac{1}{4} \int_5^{9} r(t)dt \] is the average rainfall (in inches per hour) between 5:00 PM and 9:00 PM.