1. (2 points each) Circle "True" or "False" for each of the following problems. Circle "True" only if the statement is always true. No explanation is necessary.
(a) Suppose that a differentiable function h and its derivative, h^{\prime}, are continuous. If $h^{\prime}(x)<0$ for all $a \leq x \leq b$ then every left-hand sum estimate of $\int_{a}^{b} h(x) d x$ will be an overestimate.

True False

(b) For $f(x)$ a continuous function, $\int_{-1}^{1} f(x) d x=2 \int_{0}^{1} f(x) d x$.

True False
(c) If $\int_{0}^{3} f(x) d x=5$, then $\int_{0}^{3} 3 f(x) d x=15$.

$$
\begin{array}{|l|}
\hline \text { True } \quad \text { False } \\
\hline
\end{array}
$$

(d) If $Z(t)$ is an anti-derivative for $z(t)$, then $Z(t+5)$ is also an anti-derivative for $z(t)$.

$$
\text { True } \quad \text { False }
$$

2. (3 points each) Explain in words what the following represent:
(a) $\int_{2}^{6} f(t) d t$ where $f(t)$ is the rate at which people are lining up outside of Target waiting for the store to open at 6 am , where t is in hours after midnight on the day after Thanksgiving,
$\int_{2}^{6} f(t) d t$ is the total number of people who line up between 2:00 AM and 6:00AM.
(b) $\int_{0}^{4} a(t) d t$ where $a(t)$ is acceleration of an object in $\mathrm{ft} / \mathrm{sec}^{2}$ and t is in seconds
$\int_{0}^{4} a(t) d t$ is the total change in velocity (in feet per second) of the object between the times $t=0$ and $t=4$.
(c) $\frac{1}{4} \int_{5}^{9} r(t) d t$ where $r(t)$ is rainfall in inches per hour and t is in hours since noon $\frac{1}{4} \int^{9} r(t) d t$ is the average rainfall (in inches per hour) between 5:00 PM and 9:00 PM.
