4. (8 points) Consider the function $f(x)=e^{-x^{2}}$.
(a) Use a right-hand sum with four equal subdivisions to estimate $\int_{0}^{2} f(x) d x$.

With four subdivisions we must use $\Delta x=\frac{(2-0)}{4}=0.5$. The right-hand sum estimate is therefore,

$$
0.5(f(0.5)+f(1)+f(1.5)+f(2))=0.6352
$$

(b) Without computing the integral from part (a), determine whether your estimate is an overestimate or an underestimate. Justify your answer.

Note that $f^{\prime}(x)=-2 x e^{-x^{2}}$. Since $e^{-x^{2}}>0$ for all $x>0$ and $-2 x<0$ for all $x>0$, we see that $f^{\prime}(x)<0$ for all $x>0$. Therefore, $f(x)$ is decreasing for all $x>0$ and so the right-hand sum estimate is an underestimate.

