6. (10 points) Using techniques from calculus, find the dimensions which will maximize the surface area of a solid circular cylinder whose height h and radius r, each in centimeters, are related by

$$
h=8-\frac{r^{2}}{3}
$$

[Hint: the surface area of a cylinder is given by $2 \pi r^{2}+2 \pi r h$.]

Since the radius and height are related by $h=8-\frac{r^{2}}{3}$, the surface area may be written as a function of the radius, r, by

$$
S(r)=2 \pi r^{2}+2 \pi r\left(8-\frac{r^{2}}{3}\right)=-\frac{2 \pi}{3} r^{3}+2 \pi r^{2}+16 \pi r
$$

To maximize the surface area we must find the global maximum of $S(r)$. We are only interested in positive values for r; i.e., the interval $r>0$. We start by finding the critical points of $S(r)$. Note that $S^{\prime}(r)=-2 \pi r^{2}+4 \pi r+16 \pi=-2 \pi\left(r^{2}-2 r-8\right)$. To solve $S^{\prime}(r)=0$, we can factor. We get

$$
-2 \pi(r-4)(r+2)=0
$$

so the critical points occur at $r=4$ and $r=-2$. On the interval $r>0, r=4$ is the only critical point. By the second derivative test, it is a local maximum $\left(S^{\prime} \prime(4)=-12 \pi<0\right)$ Also, for very large values of r we see that $S(r)$ is negative so the global maximum occurs at $r=4$. When $r=4$ we find that $h=8-\frac{16}{3}=\frac{8}{3}$ and so these dimensions maximize the surface area.

$$
h=\frac{8}{3} \mathrm{~cm}
$$

