- 1. (3 points each) In each of the following, circle **one** of the answers (A)-(E). No explanation necessary.
 - (a) If f is differentiable for all x and has a local maximum at x=3, then which of the following must be true?
 - I. f'(3) = 0
 - II. f''(3) < 0
 - III. f is continuous at x = 3
 - (A) I only

(B) II only

(C) I and II only

(D) I and III only

- (E) I, II, and III
- (b) If f and g are differentiable, h(x) = f(x) g(x), and h(x) has a local maximum value at x = 3, then
 - (A) f'(x) > g'(x)
- (B) f'(3) = g'(3)
- (C) f'(3) < g'(3)
- (D) f(x) has a local maximum value at x = 3
- (E) g(x) has a local minimum value at x=3
- (c) Let $f(x) = \frac{\sin(x)}{e^x}$ for x > 0. When the minimum value of f(x) occurs, then
 - $(A) \sin(x) = 0$
- (B) $\cos(x) = 0$
- (C) $\cos(x) = \sin(x)$

- (D) $\cos(x) = -\sin(x)$ (E) f(x) does not have any extreme values on the interval $[0, \infty)$

- (d) The graph of $y = x + \frac{1}{x}$ is both increasing and concave down on the interval
 - (A) $(-\infty, -1)$

(B) (-1,0)

(C) (0,1)

(D) $(1,\infty)$

(E) never