1. (3 points each) In each of the following, circle **one** of the answers (A)-(E). No explanation necessary.

(a) If \(f \) is differentiable for all \(x \) and has a local maximum at \(x = 3 \), then which of the following **must** be true?

 I. \(f'(3) = 0 \)
 II. \(f''(3) < 0 \)
 III. \(f \) is continuous at \(x = 3 \)

 (A) I only
 (B) II only
 (C) I and II only
 (D) I and III only
 (E) I, II, and III

(b) If \(f \) and \(g \) are differentiable, \(h(x) = f(x) - g(x) \), and \(h(x) \) has a local maximum value at \(x = 3 \), then

 (A) \(f'(x) > g'(x) \)
 (B) \(f'(3) = g'(3) \)
 (C) \(f'(3) < g'(3) \)
 (D) \(f(x) \) has a local maximum value at \(x = 3 \)
 (E) \(g(x) \) has a local minimum value at \(x = 3 \)

(c) Let \(f(x) = \frac{\sin(x)}{e^x} \) for \(x > 0 \). When the minimum value of \(f(x) \) occurs, then

 (A) \(\sin(x) = 0 \)
 (B) \(\cos(x) = 0 \)
 (C) \(\cos(x) = \sin(x) \)
 (D) \(\cos(x) = -\sin(x) \)
 (E) \(f(x) \) does not have any extreme values on the interval \([0, \infty)\)

(d) The graph of \(y = x + \frac{1}{x} \) is both increasing and concave down on the interval

 (A) \((-\infty, -1)\)
 (B) \((-1, 0)\)
 (C) \((0, 1)\)
 (D) \((1, \infty)\)
 (E) never