1. (3 points each) In each of the following, circle one of the answers (A)-(E). No explanation necessary.
(a) If f is differentiable for all x and has a local maximum at $x=3$, then which of the following must be true?
I. $f^{\prime}(3)=0$
II. $f^{\prime \prime}(3)<0$
III. f is continuous at $x=3$
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III
(b) If f and g are differentiable, $h(x)=f(x)-g(x)$, and $h(x)$ has a local maximum value at $x=3$, then
(A) $f^{\prime}(x)>g^{\prime}(x)$
$(\mathrm{B}) f^{\prime}(3)=g^{\prime}(3)$
(C) $f^{\prime}(3)<g^{\prime}(3)$
(D) $f(x)$ has a local maximum value at $x=3$
(E) $g(x)$ has a local minimum value at $x=3$
(c) Let $f(x)=\frac{\sin (x)}{e^{x}}$ for $x>0$. When the minimum value of $f(x)$ occurs, then
(A) $\sin (x)=0$
(B) $\cos (x)=0$
(C) $\cos (x)=\sin (x)$
(D) $\cos (x)=-\sin (x)$
(E) $f(x)$ does not have any extreme values on the interval $[0, \infty)$
(d) The graph of $y=x+\frac{1}{x}$ is both increasing and concave down on the interval
(A) $(-\infty,-1)$
(B) $(-1,0)$
(C) $(0,1)$
(D) $(1, \infty)$
(E) never
