- 1. (3 points each) In each of the following, circle **one** of the answers (A)-(E). No explanation necessary.
 - (a) If f is differentiable for all x and has a local maximum at x = 3, then which of the following **must** be true?

I.
$$f'(3) = 0$$

II. $f''(3) < 0$
III. f is continuous at $x = 3$
(A) I only (B) II only (C) I and II only
(D) I and III only (E) I, II, and III

- (b) If f and g are differentiable, h(x) = f(x) g(x), and h(x) has a local maximum value at x = 3, then
 - (A) f'(x) > g'(x) (B)f'(3) = g'(3) (C) f'(3) < g'(3)

(D) f(x) has a local maximum value at x = 3

(E) g(x) has a local minimum value at x = 3

- (c) Let $f(x) = \frac{\sin(x)}{e^x}$ for x > 0. When the minimum value of f(x) occurs, then
 - (A) $\sin(x) = 0$ (B) $\cos(x) = 0$ (C) $\cos(x) = \sin(x)$
 - (D) $\cos(x) = -\sin(x)$ (E) f(x) does not have any extreme values on the interval $[0,\infty)$

(d) The graph of $y = x + \frac{1}{x}$ is both increasing and concave down on the interval

$$(A) (-\infty, -1) (B) (-1, 0) (C) (0, 1)$$

$$(D) (1, \infty) (E) never$$