3. (12 points) Consider the family of cubics of the form

$$
f(x)=a x^{3}+b x+c
$$

with a, b, and c non-zero constants.
(a) (2 points) Using the function $f(x)=a x^{3}+b x+c$ as given above, write the limit definition of the derivative function, $f^{\prime}(x)$. (No need to expand or simplify-just apply the definition to this function, using proper notation.)

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{a(x+h)^{3}+b(x+h)+c-a x^{3}-b x-c}{h}
$$

(b) (6 points) Under what conditions, if any, on a, b, and c will f have local extrema (i.e., maxima/minima)?

Since f is a polynomial, so critical points only occur when $f^{\prime}(x)=0$.

$$
f^{\prime}(x)=3 a x^{2}+b
$$

$f^{\prime}(x)=0$ if there are real values of x such that $2 a x^{2}+b=0$, this only occurs if $-\frac{b}{3 a}>0$ (or if a and b are opposite signs). If this conditions holds for a and b then there are two critical points at $x= \pm \sqrt{-\frac{b}{3 a}}$. To check that these are indeed extrema, one could take the second derivative $f^{\prime \prime}(x)=6 a x$, and then $f^{\prime \prime}\left(\pm \sqrt{-\frac{b}{3 a}}\right)= \pm 6 a \sqrt{-\frac{b}{3 a}}$. Thus indeed, if a and b are opposite signs, then the second derivative is either positive or negative (since a and b are non-zero) at the critical points, and consequently each critical point is indeed an local extrema under this condition.
(c) (4 points) Under what conditions, if any, on a, b, and c will f have inflection point(s)?

Possible inflection points occur when $f^{\prime \prime}(x)=0$. The second derivative of $f(x)$ (as calculated above) is $f^{\prime \prime}(x)=6 a x$. Since a is non-zero then the only possible inflection point occurs when $x=0$. To check that this is indeed an inflection point we must check the concavity does indeed change at $x=0$. This is indeed the case, for if $a>0$ then $f^{\prime \prime}(x)<0$ for $x<0$ and $f^{\prime \prime}(x)>0$ for $x>0$. Consequently $x=0$ is an inflection point for ANY values of a, b, and c.

