4. (10 points) Suppose a paraboloid cup is inscribed in a hemisphere of radius 4 inches. The volume of the paraboloid is given by \(\frac{1}{2} \pi r^2 h \). For what values of the parameters \(r \) and \(h \) is the volume of the cup maximized?

One can envision \(r \) and \(h \) being the coordinates of a point on a circle of radius 4, thus \(r \) and \(h \) must be related by:

\[
r^2 = 16 - h^2.
\]

Using this relationship and the given formula for the volume of the paraboloid, \(V = \frac{1}{2} \pi r^2 h \) we can write \(V \) in terms of \(h \) only by replacing \(r^2 \). Namely,

\[
V = \frac{1}{2} \pi (16 - h^2)h.
\]

Differentiating \(V \) with respect to \(h \) gives, \(dV/dh = \frac{1}{2} \pi (16 - 3h^2) \). Critical points occur at values of \(h \) when \(dV/dh = 0 \), such values of \(h \) are \(h = \pm \frac{4}{\sqrt{3}} \). Because \(h \) represents a height and since it must be less then 4 (since it is inscribed in the sphere), then we only are interested in \(0 \leq h \leq 4 \). Clearly if \(h = 4 \) or \(h = 0 \) then the volume is 0. The only critical point between 0 and 4 is the positive critical point \(h = \frac{4}{\sqrt{3}} \), substituting back into the equation for the volume we see that when \(h = \frac{4}{\sqrt{3}} \), the volume is \(V = \frac{1}{2} \pi \left(16 - \left(\frac{4}{\sqrt{3}} \right)^2 \right) \left(\frac{4}{\sqrt{3}} \right) = \frac{64\pi}{3\sqrt{3}} \). Consequently, since this volume is positive, it must be the maximum volume. We can find the radius at this value of \(h \) using \(r^2 = 16 - h^2 \) to get \(r = 4 \sqrt{\frac{2}{3}} \). Consequently, the volume is maximized when \(h = \frac{4}{\sqrt{3}} \) inches and \(r = 4 \sqrt{\frac{2}{3}} \) inches.