4. (10 points) Suppose a paraboloid cup is inscribed in a hemisphere of radius 4 inches. The volume of the paraboloid is given by $\frac{1}{2} \pi r^{2} h$. For what values of the parameters r and h is the volume of the cup maximized?

One can envision r and h being the coordinates of a point on a circle of radius 4, thus r and h must be related by:

$$
r^{2}=16-h^{2} .
$$

Using this relationship and the given formula for the volume of the paraboloid, V, $\left(V=\frac{1}{2} \pi r^{2} h\right)$ we can write V in terms of h only by replacing r^{2}. Namely,

$$
V=\frac{1}{2} \pi\left(16-h^{2}\right) h .
$$

Differentiating V with respect to h gives, $d V / d h=\frac{1}{2} \pi\left(16-3 h^{2}\right)$. Critical points occur at values of h when $d V / d h=0$, such values of h are $h= \pm \frac{4}{\sqrt{3}}$. Because h represents a height and since it must be less then 4 (since it is inscribed in the sphere), then we only are interested in $0 \leq h \leq 4$. Clearly if $h=4$ of $h=0$ then the volume is 0 . The only critical point between 0 and 4 is the positive critical point $h=\frac{4}{\sqrt{3}}$, substituting back into the equation for the volume we see that when $h=\frac{4}{\sqrt{3}}$, the volume is $V=\frac{1}{2} \pi\left(16-\left(\frac{4}{\sqrt{3}}\right)^{2}\right)\left(\frac{4}{\sqrt{3}}\right)=\frac{64 \pi}{3 \sqrt{3}}$. Consequently, since this volume is positive, it must be the maximum volume. We can find the radius at this value of h using $r^{2}=16-h^{2}$ to get $r=4 \sqrt{\frac{2}{3}}$. Consequently, the volume is maximized when $h=\frac{4}{\sqrt{3}}$ inches and $r=4 \sqrt{\frac{2}{3}}$ inches.

