5. (10 points) A small boat has run out of gas. A cable is attached to the front of the boat 2 meters above the water. The other end of the cable is attached to a wheel of radius 0.5 meters sitting on the back of a tugboat. The top of the wheel is 7 meters above the water, and turns at a constant rate of 1 revolution per second. [See the figure below-not drawn to scale.]

(a) At what rate is the length of the cable between the two boats changing?

Let n represents the number of rotations of the wheel and l the length of the cable between the two boats. We are only interested in the rate at which l is changing, and l decreases by $2 \pi(.5)=\pi$ meters per rotation. Since the wheel is being turned at 1 revolution per second then l is decreasing by π meters per second. In other words $d l / d t=-\pi \frac{\text { meters }}{\text { second }}$.
(b) How fast is the small boat being pulled forward when it is 10 meters away from the tugboat?

Let s represent the distance between the two boats (see the diagram). Using the Pythagorean Theorem, $s^{2}+25=l^{2}$. Solving for s,

$$
s=\sqrt{l^{2}-25} .
$$

There is no ambiguity here because s and l are both positive distances. Differentiating this relation with respect to t gives:

$$
\frac{d s}{d t}=\frac{l}{\sqrt{l^{2}-25}} \frac{d l}{d t} .
$$

From the information in part (a) we know that $d l / d t=-\pi \frac{\mathrm{m}}{\mathrm{s}}$. Additionally we want to know $d s / d t$ when $s=10$ meters, using again that $l^{2}=s^{2}+25$ we see that $l=5 \sqrt{5}$ when $s=10$. Consequently,

$$
\frac{d s}{d t}=\frac{5 \sqrt{5}}{\sqrt{(5 \sqrt{5})^{2}-25}}(-\pi)=-\frac{\sqrt{5}}{2} \pi \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

