6. Suppose $H(c)$ gives the average temperature, in degrees, that can be maintained in Oscar's apartment during the month of December as a function of the cost of the heating bill, c, in dollars. In complete sentences, give a practical interpretation of the following:
(a) (3 points) $H(50)=65$

The practical interpretation of $H(50)=65$ is that if Oscar's heating bill costs $\$ 50.00$ in December then he is able to maintain an average temperature during that month of 65°.
(b) $\left(3\right.$ points) $H^{\prime}(50)=2$

The practical interpretation of $H^{\prime}(50)=2$ is that if Oscar's December heating bill increases from $\$ 50.00$ to $\$ 51.00$, then the average temperature he can maintain during that month will change from 65° to approximately 67°.

Suppose $T(t)$ gives the temperature in Oscar's apartment on December 18 th in ${ }^{\circ} \mathrm{F}$ as a function of the time, t, in hours since 12:00 midnight. Below is a graph of $T^{\prime}(t)$: (NOTE: the graph is of $T^{\prime}(t)$.)

(c) (6 points) When Oscar gets home from work at 6 pm the temperature in his apartment is 67 degrees. What was the temperature when he left for work at 8 am ?
Using the Fundamental Theorem of Calculus we know that

$$
\int_{8}^{18} T^{\prime}(t) d t=T(18)-T(8)
$$

We are given that $T(18)=67^{\circ}$. Computing the areas I and II on the graph of T^{\prime} we know that the $\int_{8}^{18} T^{\prime}(t) d t=-\mathrm{II}+\mathrm{I}=-10+12=2$ Consequently, $2=67^{\circ}-T(8)$. Thus the temperature at 8 am is $T(8)=65^{\circ}$.
(d) (4 points) If the temperature at 6 pm is 67 degrees, what is the minimum temperature in the apartment on December 18th?
When $T^{\prime}(t)>0\left(T^{\prime}(t)<0\right)$ then T is increasing (decreasing) and when $T^{\prime}(x)$ is 0 on an interval the temperature is constant. Thus for $12<t<2,6<t<8,12<t<14$ and $18<t<22$ the temperature is not changing, for $2<t<6$ and $14<t<18$ the temperature is increasing, while it is decreasing for $8<t<12$ and $22<t<24$. Consequently the minimum temperature either occurs at $t=0, t=12$ or $t=24$. Using the Fundamental Theorem of Calculus, and our knowledge of interpreting integrals as areas we have, $T(12)=$ $T(18)-\int_{12}^{18} T^{\prime}(t) d t=67-I I=67-12=55^{\circ}$ and $T(24)=T(18)+\int_{18}^{24} T^{\prime}(t) d t=67-I I I=$ $67-8=59^{\circ}$, and similarly $T(0)=59^{\circ}$. Consequently, the minimum temperature occurs anywhere between noon and 2 pm . This minimum temperature is $55^{\circ} \mathrm{F}$.

