2. (7 points) Use a Riemann Sum with 4 equal subdivisions to find a lower estimate for

$$
\int_{0}^{2} e^{x}+1 d x
$$

Clearly indicate whether you are using a left-hand sum or a right-hand sum, and show all intermediate calculations. Show your answer to three decimal places (or in exact form).

The function is increasing, therefore the Left Sum is the lower sum.

x	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
$e^{x}+1$	2	$e^{1 / 2}+1$	$e+1$	$e^{3 / 2}+1$	$e^{2}+1$
$e^{x}+1$	2	2.6487	3.7183	5.4817	8.3891

Left Sum

$$
L H S_{(4)}=(0.5)(2)+(0.5)\left(e^{1 / 2}+1\right)+(0.5)(e+1)+(0.5)\left(e^{3 / 2}+1\right)=6.9243
$$

3. (7 points) Let $f(x)=\cos (x)+b x$ and $g(x)=x^{2}-x$. Find the value of b such that $f(x)>g(x)$ on $[0,1]$ and the area between the curves from $x=0$ to $x=1$ is equal to 1 .

$$
\begin{aligned}
1= & \int_{0}^{1} \cos x+b x-\left(x^{2}-x\right) d x \\
& 1=\sin (1)-\frac{1}{3}+\frac{b+1}{2} \\
b= & \frac{5}{3}-2 \sin (1)=-0.0162753
\end{aligned}
$$

[Note that with this value of $b, f(x)>g(x)$ on [0,1]-but, with the set-up of the problem as indicated above, we are assuming that $f(x)>g(x)$ on the interval.]

