5. (10 points) Madam Whippy's ice-cream store has a vending machine that pumps out manilla vanilla at a constant rate of $2 \mathrm{~cm}^{3}$ per second. If you are collecting the ice-cream in a cone of maximum radius 5 cm and height 10 cm , how fast is the radius of the surface of the ice-cream changing when the height of ice cream in the cone is 6 cm ? Assume that the ice cream is softserve and fills the cone with a flat surface.
[You may need: Volume of a cone of height $h$ and radius $r$ is given as $V=\frac{1}{3} \pi r^{2} h$.]


Using similar triangles,

$$
\frac{r}{h}=\frac{5}{10} \rightarrow h=2 r
$$

Thus $V=\frac{2}{3} \pi r^{3}$ and

$$
\frac{d V}{d t}=2 \pi r^{2} \frac{d r}{d t}
$$

and since we are given $\frac{d V}{d t}=2$, we have

$$
2=2 \pi r^{2} \frac{d r}{d t} \rightarrow \frac{d r}{d t}=\frac{1}{\pi r^{2}}
$$

which at $h=6$ and $r=3$ gives

$$
\frac{d r}{d t}=\frac{1}{9 \pi} \quad \mathrm{~cm} / \mathrm{s} .
$$

