8. (14 points) Adrian is decorating her apartment for the holidays. She plans to outline a fake window with fancy lights. The window is to be in the shape of a rectangle topped by a semicircle (see Figure below). The cost of the fancy lights for the circular portion of the window is $\$ 25$ per meter, and the cost of the regular lights for the straight edging is $\$ 10$ per meter. If the "window" has a total area of $1 \mathrm{~m}^{2}$, what are the dimensions that will minimize the cost of the lighted perimeter?

If r is the radius of the semicircle and h is the height of the straight side, then the area is

$$
A=2 r h+\frac{\pi r^{2}}{2}=1
$$

so

$$
h=\frac{\left(1-\frac{\pi r^{2}}{2}\right)}{2 r}=\frac{1}{2 r}-\frac{\pi r}{4} .
$$

Thus, the cost is

$$
C=25 \pi r+10(2 r+2 h),
$$

which gives

$$
C=25 \pi r+10\left(2 r+2\left(\frac{1}{2 r}-\frac{\pi r}{4}\right)\right)=25 \pi r+20 r+\frac{10}{r}-5 \pi r .
$$

Then

$$
C^{\prime}=25 \pi+20-\frac{10}{r^{2}}-5 \pi
$$

$C^{\prime}(r)=0$ if $\frac{10}{r^{2}}=20 \pi+20$, so

$$
r^{2}=\frac{1}{2 \pi=2} \approx 0.3475 \text { meters. }
$$

Checking for minimum, we have

$$
C^{\prime \prime}(r)=\frac{10}{r^{3}}
$$

which is greater than zero for all $r>0$, so $r=0.3475$ is a local minimum. Since this is the only critical point, it is the global minimum.

When $r=0,3475, h=1.166$, so the dimensions are base $=0.695$ meters, and height $=1.166$ meters.

