1. [12 points] In the 17th century, a ship's navigator would estimate the distance the ship has traveled using readings of the ship's velocity, $v(t)$, in knots (nautical miles per hour). Suppose that between noon and $3: 00 \mathrm{pm}$ a certain galleon is traveling with the wind and against the ocean current, and that its velocity is given as the difference between the wind velocity $w(t)$ and the velocity of the ocean current $c(t)$, so that $v(t)=w(t)-c(t)$, where t is in hours since noon. Consider the wind and ocean velocities for various times between noon and 3:00 p.m., given by the graphs below:

a. [1 point] Using integral notation write an expression giving the distance the ship traveled from noon to 3:00 pm. Give units.
Solution: $d=\int_{0}^{3} v(t) d t$, with the distance in nautical miles.
b. [1 point] Using integral notation write an expression giving the average velocity of the ship between noon and 3:00 pm. Give units.
Solution: $v_{a v}=\frac{1}{3} \int_{0}^{3} v(t) d t$, with the distance in nautical miles/hour, or knots.
c. [2 points] For what intervals was the ship's velocity positive?

Solution: The ship's velocity is positive when $w(t)>c(t)$, which happens on the intervals $\left(t_{1}, t_{3}\right)$ and $\left(t_{5}, t_{7}\right)$.
d. [2 points] For what t values was the ship not moving towards its destination?

Solution: Since this happens when the ship's velocity is zero or negative, the t values are $\left[t_{0}, t_{1}\right],\left[t_{3}, t_{5}\right]$ and t_{7}.
e. [2 points] For what intervals was the ship's velocity increasing?

Solution: The ship's velocity is increasing when the acceleration is positive, and since $a(t)=v^{\prime}(t)=w^{\prime}(t)-c^{\prime}(t)$, in order for $a(t)>0$ we need $w^{\prime}(t)>c^{\prime}(t)$, i.e. that the slope of the tangent line to $w(t)$ is greater than the slope of the tangent line to $c(t)$. This happens on the intervals $\left(t_{0}, t_{2}\right)$ and $\left(t_{4}, t_{6}\right)$.
f. [4 points] Please circle each integral which is positive and underline each integral which is negative.

