2. [10 points] The graph of the derivative of the continuous function $M(x)$ is given below.

Using the fact that $M(-4)=-2$, sketch the graph of $M(x)$ on the axes below. Give the coordinates of all critical points, inflection points and endpoints of M on the interval [-4,4].

Solution:

To find the y-values, we have used $M(b)=M(-4)+\int_{-4}^{b} M^{\prime}(x) d x=-2+\int_{-4}^{b} M^{\prime}(x) d x$, along with the formulas of the area of a triangle and rectangle to find the integrals. For example, $M(-2)=-2+\int_{-4}^{-2} M^{\prime}(x) d x=-2+(1 / 2)(2)(2)=0$. For $-4<x<-2, M^{\prime}(x)$ is positive and decreasing, so $M(x)$ is increasing and concave down. We can reason similarly to determine the shape of the graph of $M(x)$ over the intervals $-2<x<0,0<x<2$ and $2<x<4$, giving critical points at $(-2,0)$ and $(1,-1.5)$. The inflection point is at $(0,-1)$, and the endpoints are $(-4,-2)$ and $(4,1)$.

