3. [20 points] The following questions are each meant to have short computation times. Each question is worth 4 points.
a. [4 points] If $f(x)$ is even and $\int_{-2}^{2}(f(-x)-3) d x=8$, find $\int_{0}^{2} f(x) d x$.

Solution: By definition, f being even means that $f(-x)=f(x)$. Now, $\int_{-2}^{2}(f(-x)-$ 3) $d x=\int_{-2}^{2} f(x) d x-3 \int_{-2}^{2} 1 d x=\int_{-2}^{2} f(x) d x-12$. Then, since $\int_{-2}^{2} f(x) d x=2 \int_{0}^{2} f(x) d x$, because f is even, we get that $2 \int_{0}^{2} f(x) d x-12=8$, which gives $\int_{0}^{2} f(x) d x=10$.
b. [4 points] The average value of the function $g(x)=10 / x^{2}$ on the interval $[c, 2]$ is equal to 5 . Find the value of c.
Solution: We have that $\frac{1}{2-c} \int_{c}^{2} \frac{10}{x^{2}} d x=5$. Since $\int_{c}^{2} \frac{10}{x^{2}} d x=10\left(\frac{-1}{2}+\frac{1}{c}\right)=10\left(\frac{1}{c}-\frac{1}{2}\right)=$ $10\left(\frac{2-c}{2 c}\right)=5\left(\frac{2-c}{c}\right)$, then the left hand side of our equation becomes $\frac{1}{2-c}\left(\frac{5(2-c)}{c}\right)=$ $\frac{5}{c}$. Thus, solving $\frac{5}{c}=5$ yields $c=1$.
c. [4 points] If people are buying UMAir Flight 123 tickets at a rate of $R(t)$ tickets/hour (where t is measured in hours since noon on December 15, 2008), explain in words what $\int_{3}^{27} R(t) d t$ means in this context.

Solution: The expression $\int_{3}^{27} R(t) d t$ represents the total number of tickets sold for UMAir Flight 123 from 3 pm on Dec. 15, 2008 to 3 pm on Dec. 16, 2008.
d. [4 points] Suppose that the function $N=f(t)$ represents the total number of students who have turned in this exam t minutes after the beginning of the exam. Interpret $\left(f^{-1}\right)^{\prime}(325)=2$. [Note: this is an edit of the original problem. Grading on the final took into account the original wording.]

Solution: First note that $f^{-1}(N)=t$, so that 325 represents the number of students. Thus, $\left(f^{-1}\right)^{\prime}(325)=2$ means that when 325 students have turned in their exam, it will be approximately 2 minutes before the next student turns in an exam.
e. [4 points] Find k so that the function $h(x)$ below is continuous for all x.

$$
h(x)= \begin{cases}x^{2}+1, & x \leq 1 \\ 6 \sin (\pi(x-0.5))+k, & x>1\end{cases}
$$

Solution: Each function that makes up $h(x)$ is continuous on for all real numbers. Thus, the only place where we need to worry about $h(x)$ not being continuous is at $x=1$. We know that $h(1)=(1)^{2}+1=2$, and that $\lim _{x \rightarrow 1^{+}} h(x)=6 \sin (\pi(1-0.5))+k=6+k$. So, in order for $h(x)$ to be continuous at $x=1$, we need that $\lim _{x \rightarrow 1^{+}} h(x)=h(1)$, or that $6+k=2$, which gives $k=-4$.

