4. [11 points] Consider the function $f(x)=x^{3} \ln x$.
a. [4 points] Use the general expression for a left-hand sum using 4 subdivisions to write an approximation for

$$
\int_{1}^{3} x^{3} \ln x d x
$$

-i.e., express each term of the left-hand sum, using the given function. There is no need to evaluate the sum.
Solution: The width of each subdivision is given by $\Delta x=(b-a) / n=(3-1) / 4=1 / 2$. We also know that the left hand sum, in this case, is given by $[f(a)+f(a+\Delta x)+f(a+$ $2 \Delta x)+f(a+3 \Delta x)] \Delta x$

$$
=\left[1^{3} \ln 1+(1.5)^{3} \ln 1.5+2^{3} \ln 2+2.5^{3} \ln 2.5\right](0.5)
$$

b. [3 points] Show that $\int x^{3} \ln x d x=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+C$. Show your work.

Solution: The statement $\int f(x) d x=F(x)$ is the same as the statement $F^{\prime}(x)=f(x)$, so we need to take the derivative of the right hand side $F(x)=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+C$ and (hopefully) get the integrand $f(x)=x^{3} \ln x$. We have that

$$
F^{\prime}(x)=x^{3} \ln x+\frac{x^{4}}{4}\left(\frac{1}{x}\right)-\frac{x^{3}}{4}=x^{3} \ln x+\frac{x^{3}}{4}-\frac{x^{3}}{4}=x^{3} \ln x,
$$

so, indeed, $\int x^{3} \ln x d x=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+C$.
c. [4 points] Use the Fundamental Theorem of Calculus and part (b) to find the exact value of $\int_{1}^{3} x^{3} \ln x d x$. Leave your answer in exact form-in other words, do not convert to a decimal. Again, show your work.
Solution: By the Fundamental Theorem of Calculus, we know that $\int_{a}^{b} f(x) d x=F(b)-$ $F(a)$, where $F^{\prime}(x)=f(x)$. Applying this, and part (b), we have that $\int_{1}^{3} x^{3} \ln x d x=$ $\left.\left(\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}\right)\right|_{1} ^{3}$

$$
=\frac{3^{4}}{16}(4 \ln 3-1)+\frac{1}{16} .
$$

