5. [15 points] Suppose that you are brewing coffee and that hot water is passing through a special, cone-shaped filter (see below). Assume that the height of the conic filter is 3 in . and that the radius of the base of the cone is 2 in . If the water is flowing out of the bottom of the filter at a rate of $1.5 \mathrm{in}^{3} / \mathrm{min}$ when the remaining water in the filter is 2 in . deep, how fast is the depth of the water changing at that instant?
[Note: if d is depth of the water in the cone and the radius is r, the volume is given by $V=\frac{1}{3} \pi r^{2} d$.]

Solution: Since the volume depends on two variables, we must eliminate one using similar triangles. As shown, we can relate r and d by $\frac{r}{d}=\frac{2}{3}$, or $r=\frac{2}{3} d$. Using this in V, we get

$$
V(d)=\frac{1}{3} \pi\left(\frac{2}{3} d\right)^{2} d=\frac{4}{27} \pi d^{3}
$$

From this we can find $\frac{d V}{d t}$:

$$
\frac{d V}{d t}=\frac{d V}{d d} \cdot \frac{d d}{d t}=\frac{4}{9} \pi d^{2} \frac{d d}{d t} .
$$

We're given that $\frac{d V}{d t}=-1.5 \mathrm{in}^{3} / \mathrm{min}$, and that $d=2$. Thus, plugging in gives

$$
-1.5=\frac{4}{9} \pi(2)^{2} \frac{d d}{d t}=\frac{16 \pi}{9} \cdot \frac{d d}{d t},
$$

which allows us to solve for $\frac{d d}{d t}$ to get

$$
\frac{d d}{d t}=-\frac{13.5}{16 \pi} \approx-0.26857 \mathrm{in} / \mathrm{min} .
$$

