6. [7 points] The derivative of a continuous function g is given by

$$
g^{\prime}(x)=\frac{e^{-2 x}(x+2)(x-3)^{2}}{(x-5)^{1 / 3}}
$$

Determine all critical points of g, and classify each as a local maximum, a local minimum, or neither. Carefully explain your reasoning for each classification.

Solution: Since we are already given the derivative of a continuous function, we need only find out where the derivative is zero or undefined. Since the factor $e^{-2 x}$ is positive for all x, the derivative is equal to zero at $x=-2,3$ and undefined at $x=5$. Applying the first derivative test around $x=-2$, we can use the equation to determined that g^{\prime} changes sign from positive to negative around $x=-2$. Thus, $x=-2$ is a local maximum. Around $x=3$, we find that $g^{\prime}<0$ both to the left and right of $x=3$, so the critical point $x=3$ is neither a local maximum or minimum. Lastly, around $x=5$, the derivative changes sign from negative to positive. Thus, g has a local minimum at $x=5$.
7. [8 points] Use the following figure, which shows a graph of $f(x)$, to find each of the indicated integrals, given that the first area (with the darker shading) is 12 units and the second area is (with the lighter shading) is 3 units.

(a) $\int_{a}^{b} f(x) d x \quad-12$
(c) $\int_{c}^{a} f(x) d x \longrightarrow 9$
(b) $\int_{a}^{c}|f(x)| d x-15$
(d) $\int_{a}^{a} 2(f(x)+3) d x \longrightarrow 0$

