1. [13 points] The graph of the derivative, $h^{\prime}(x)$, of a continuous function h is shown below:

a. $[3$ points $]$ Approximate the x-coordinates of all critical points of h in the interval $(-5,5)$, and classify each as either a local maximum, a local minimum, or neither.

Solution: Since $h^{\prime}(x)$ is defined at every point in $(-5,5)$, the critical points of h on $(-5,5)$ are the zeros of h^{\prime}. These are $x=-4, x=-1$, and $x=4$. At $x=-4, h^{\prime}$ changes from positive to negative, so h has a local maximum at $x=-4$. At $x=-1, h^{\prime}$ changes from negative to positive, so h has a local minimum at $x=-1$. Since the sign of h^{\prime} does not change at $x=4, h$ has neither a local maximum nor local minimum at $x=4$.
b. [3 points] Approximate the x-coordinate(s) of any inflection point(s) of h in the interval $(-5,5)$.

Solution: At (approximately) $x=-2.8, x=1$, and $x=4$, the sign of the derivative of h^{\prime} changes, so the concavity of h changes. Hence h has an inflection point at each of $x=-2.8, x=1$, and $x=4$.
c. [2 points] Approximate the value(s) of x on the interval $[-5,5]$ where h attains its global maximum.

Solution: $\quad h$ attains its global maximum on $[-5,5]$ at $x=5$.
(By comparing areas, we see that the amount by which h decreases between $x=-4$ and $x=-1$ is less than the amount by which it increases after $x=-1$.)
d. [2 points] Approximate the value(s) of x on the interval $[-5,5]$ where h attains its global minimum.

Solution: $\quad h$ attains its global minimum on $[-5,5]$ at $x=-1$.
(The area under the graph of h^{\prime} between -5 and -4 is less than the area above the graph of h^{\prime} between $x=-4$ and $x=-1$, so $h(-1)<h(-5)$. Then h increases after $x=-1$.)
e. [3 points] If $h(1)=3$, find the best linear approximation to $h(x)$ at the point $x=1$. Is this linear approximation an underestimate or an overestimate of h for points near $x=1$? Explain.

Solution: The best linear approximation to $h(x)$ at the point $x=1$ is given by $L(x)=$ $h(1)+h^{\prime}(1)(x-1)$. So since $h(1)=3$ and $h^{\prime}(1)=2$, we have $L(x)=3+2(x-1)$.
This linear approximation is an underestimate of $h(x)$ for nearby $x<1$ (since h is concave up to the left of $x=1$). Similarly, $L(x)$ is an overestimate of $h(x)$ for nearby $x>1$ (since h is concave down to the right of $x=1$).

