4. [12 points]
a. [5 points] If the average value of a continuous function g on $[1,8]$ is 3 , find

$$
\int_{-1}^{6} 3(g(x+2))+5 d x
$$

Solution: We are given that

$$
\begin{gathered}
\frac{1}{8-1} \int_{1}^{8} g(x) d x=3 \text {, so, } \int_{1}^{8} g(x) d x=21 . \\
\text { Thus, } \int_{-1}^{6} 3(g(x+2))+5 d x=3 \int_{-1}^{6} g(x+2) d x+\int_{-1}^{6} 5 d x,
\end{gathered}
$$

which gives

$$
3 \int_{1}^{8} g(x) d x+5(6-(-1))=3(21)+35=98
$$

Use the following graph of a function $f(x)$ to compute the quantities in parts (b)-(d) below.

b. [2 points] $\int_{-4}^{2} f(x) d x$

Solution: $\quad \int_{-4}^{2} f(x) d x=6-10=-4$.
c. [3 points] The area between the graph of $f(x)$ and the x-axis for $-4 \leq x \leq 5$ if the units on the axes are centimeters.
Solution: Area $=6+10+3+3=22 \mathrm{~cm}^{2}$.
d. [2 points] $\int_{3}^{5} f^{\prime}(x) d x$

Solution: $\quad \int_{3}^{5} f^{\prime}(x) d x=f(5)-f(3)=3-\frac{3}{2}=\frac{3}{2}$.

