5. [13 points] A cone-shaped icicle is dripping from above the entrance to Dennison Hall. The icicle is melting at a rate of 1.2 cm^{3} per hour. At 10:00 a.m., the icicle was 25 cm long and had a 2 cm radius at its widest point. Assume that the icicle keeps the same proportions as it melts. [Note: the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.]

a. [5 points] Determine the rate at which the length of the icicle is changing at 10:00 a.m.
Solution: We are given $\frac{d V}{d t}=-1.2$ and we want to find $\frac{d h}{d t}$ at 10:00 a.m. The proportions of the cone stay the same, so at any given time, $\frac{r}{h}=\frac{2}{25}$, so $r=\frac{2 h}{25}$. Thus, $V=\frac{1}{3} \pi\left(\frac{2 h}{25}\right)^{2} \cdot h=\frac{1}{3} \pi \frac{4 h^{3}}{625}$. Taking the derivative gives, $\frac{d V}{d t}=\frac{4 \pi h^{2}}{625} \frac{d h}{d t}$, and at 10:00 a.m. we have $-1.2=\frac{4 \pi}{625}(25)^{2} \frac{d h}{d t}$ so that $\frac{d h}{d t}=\frac{-1.2}{4 \pi}=-0.0955 \mathrm{~cm} /$ hour.
b. [4 points] At what rate is the radius of the icicle changing at 10:00 a.m.?

Solution: From part (a), we have that $r=\frac{2 h}{25}$, so $\frac{d r}{d t}=\frac{2}{25} \frac{d h}{d t}$. Thus, using $\frac{d h}{d t}=$ -0.0955 , we have $\frac{d r}{d t}=\frac{-0.0955(2)}{25}=-0.00764 \mathrm{~cm} /$ hour .
c. [4 points] Let $V(t)$ and $r(t)$ denote the volume and radius, respectively, of the icicle t hours after 10:00 a.m. Assume that the icicle continued to melt from $t=0$ (10:00 a.m.) to $t=M$. Circle all of the statements below that must be true if "After the icicle began dripping at 10:00 a.m., it took exactly M hours for the icicle to melt completely." [Circle the entire expression, and be certain that your circled answers are VERY clear!!]
i. $\int_{0}^{M} V^{\prime}(t) d t>\int_{0}^{M / 2} V^{\prime}(t) d t \quad$ ii. $\int_{0}^{M} V^{\prime}(t) d t=0$
iii. $\int_{0}^{M} V^{\prime}(t) d t=-V(0)$
iv. $\int_{0}^{2} r(t) d t=0$
v. $\int_{0}^{M} r(t) d t=-2$
vi. $\int_{0}^{M} r^{\prime}(t) d t=-2$
vii. $\int_{2}^{0} V^{\prime}(r) d r=M$
viii. $\int_{0}^{M} h(t) d t=0$

