6. [12 points] The rate $q(t)$ at which cars passed through the intersection of Main Street and Huron after a football game is presented in the table below.

t (in minutes after the game ended)	0	20	40	60	80	100	120
$q(t)$ (in cars per minute)	10	15	19	21	20	17	13

a. [4 points] What is the meaning of $\int_{0}^{120} q(t) d t$? Using a left Riemann sum and $n=6$, estimate $\int_{0}^{120} q(t) d t$. (Write out the terms of your sum.)
Solution: The expression $\int_{0}^{120} q(t) d t$ gives the total number of cars that passed through the intersection in the first two hours after the game. A left-hand approximation with 6 subdivisions is given by

$$
(20)(10+15+19+21+20+17)=2040 \text { cars } .
$$

b. [2 points] Write an expression for the average rate at which cars passed through the intersection for the first two hours after the game ended.
Solution: The average rate at which cars passed through the intersection during this time period is given by $\frac{1}{120} \int_{0}^{120} q(t) d t$.
c. [3 points] Estimate $q^{\prime}(30)$.

Solution: The best estimate we can get from the table is

$$
q^{\prime}(30) \approx \frac{19-15}{40-20}=0.2 \text { cars per minute per minute. }
$$

d. [3 points] If $Q(t)$ denotes the total number of cars that have passed through the intersection t minutes after the game ended, find and interpret $Q^{\prime}(60)$.

Solution: We can read $Q^{\prime}(60)$ from the table. We have $Q^{\prime}(60)=21$ and indicates that one hour after the game, approximately 21 additional cars would pass through the intersection in the next minute.

