7. [12 points] After an unusual winter storm, the EPA is concerned about potential contamination of a river. A new researcher has been assigned the task of taking a sample to test the water quality. She tried to get as close to the river as possible in her car, but was forced to park a feet away. She also cannot get closer to the lab by car. She needs to walk to the river, retrieve a water sample, and then walk the sample to a lab located $4 a$ feet down the river and $2 a$ feet from the river bank.

If the researcher wants to walk as short a distance as possible, what path should she take as she walks from her car to the river and then from the river to the lab?
Solution: The shortest path will consist of a straight line from her car to the river and then from the river to the lab. Let P be the point on the river at which the researcher takes the sample of water, and let x be the number of miles downstream P is from where she parks. (See diagram below.)

The distance she walks is then given by the function $W(x)=\sqrt{a^{2}+x^{2}}+\sqrt{(2 a)^{2}+(4 a-x)^{2}}$. The goal is to minimize $W(x)$ on the interval $[0,4 a]$. Note that since W is continuous, the Extreme Value Theorem guarantees that W achieves a global maximum and global minimum on $[0,4 a]$.

$$
W^{\prime}(x)=\frac{x}{\sqrt{a^{2}+x^{2}}}-\frac{4 a-x}{\sqrt{(2 a)^{2}+(4 a-x)^{2}}}
$$

Since the denominators in this expression for $W^{\prime}(x)$ are never 0 (for $a>0$), critical points in $(a, 4 a)$ occur only when $W^{\prime}(x)=0$. Solving this equation, we find
$\frac{x}{a^{2}+x^{2}}=\frac{4 a-x}{\sqrt{(2 a)^{2}+(4 a-x)^{2}}}$ which reduces to $a^{2}(3 x-4 a)(x+4 a)=0$. Hence the only critical point of W on $(0,4 a)$ is $x=\frac{4 a}{3}$.
Now, for $0<x<\frac{4 a}{3}$ (e.g. $x=a$), $W^{\prime}(x)<0$ and for $\frac{4 a}{3}<x<4 a$ (e.g. $x=2 a$), $W^{\prime}(x)>0$. Hence W has a local minimum at $x=\frac{4 a}{3}$ by the First Derivative Test. Since this is the unique critical point of W in the domain of interest, W achieves its global minimum on $[0,4 a]$ at $x=\frac{4 a}{3}$.
So, in order to minimize the distance walked, the researcher should walk in a straight line from her car to the point on the river $\frac{4 a}{3}$ feet downstream to retrieve a water sample and then from that point in a straight line to the lab.

