8. [12 points]

The graph below gives the rate $S(t)$, in inches per hour, of snow fall t hours after midnight along a major thoroughfare in Ann Arbor. Beginning at 8:00 a.m., the city truck began removing snow at the rate of $2 \mathrm{in} / \mathrm{hr}$. [Salting had been halted, as a consequence of economic conditions in Michigan.] Assume that there was no snow on the road prior to midnight.

a. [2 points] How deep was the snow at 2:00 p.m.?

Solution: Since the snow removal had been going on for 6 hours at 2 pm , the depth of the snow at 2:00 pm was $\int_{0}^{14} S(t) d t-2(6)=34-12=22$ inches. (Yes, it was a serious
storm.)
b. [2 points] At what time was the snow falling the fastest?

Solution: The snow was falling fastest at $t=20$ which is 8 pm .
c. [2 points] At what time was the snow deepest?

Solution: Since the snow removal began at 8 am , the rate at which the depth was changing is given by $S(t)$ for $0 \leq t<8$ and then by $S(t)-2$ for $t \geq 8$. This rate is positive until $t=21.5$ (when the line $y=2$ intersects the graph of $S(t)$ for the second time), which is $9: 30 \mathrm{pm}$. So the snow is deepest at $9: 30 \mathrm{pm}$,
d. [2 points] At what time was the depth of the snow on the ground increasing fastest?

Solution: As in part (c), above, the rate at which the depth of snow is changing is given by $S(t)$ for $0 \leq t<8$ and then by $S(t)-2$ for $t \geq 8$. We can see from the graph that this rate is greatest at time $t=6$, i.e. at 6:00 am.
e. [2 points] What is the average rate at which snow fell between 4 am and 2 pm ?

Solution: The average rate at which snow fell between 4 am and 2 pm is given by $\frac{1}{14-4} \int_{4}^{14} S(t) d t=\frac{1}{10}(30)=3$ inches per hour.
f. [2 points] Write an expression for the average depth of the snow on the ground between 5 am and 8 am .

