2. [13 points] The U-value of a wall of a building is a positive number related to the rate of energy transfer through the wall. Walls with a lower U-value keep more heat in during the winter than ones with a higher U-value. Consider a wall which consists of two materials, material A with U-value a and material B with U -value b. The U -value of the wall w is given by

$$
w=\frac{a b}{b+a} .
$$

Considering a as a constant, we can think of w as a function of $b, w=u(b)$.
a. [4 points] Write the limit definition of the derivative of $u(b)$.

Solution: The derivative of $u(b)$ is defined to be

$$
u^{\prime}(b)=\lim _{h \rightarrow 0} \frac{u(b+h)-u(b)}{h}=\lim _{h \rightarrow 0} \frac{a(b+h) /(b+h+a)-a b /(b+a)}{h}
$$

b. [4 points] Calculate $u^{\prime}(b)$. (You do not need to use the limit definition of the derivative for your calculation.)

Solution: By the quotient rule,

$$
u^{\prime}(b)=\frac{(b+a)(a)-a b}{(b+a)^{2}}=\frac{a^{2}}{(b+a)^{2}} .
$$

c. [5 points] Find the x - and y-coordinates of the global minimum and maximum of $u(b)$ for b in the interval [1,2]. Your answer may involve the parameter a. [Recall that $a, b>0$.]
Solution: The derivative $u^{\prime}(b)$ is strictly positive for all $b>0$ by part \mathbf{b}. This means there are not any critical points on $[1,2]$ and u is strictly increasing so $b=1$ is the global minimum while $b=2$ is the global maximum. Now we compute $u(1)=\frac{a}{1+a}$ and $u(2)=\frac{2 a}{2+a}$.

$$
\text { Global minimum on }[1,2]: \quad\left(1, \frac{a}{1+a}\right)
$$

Global maximum on $[1,2]: \quad\left(2, \frac{a}{2+a}\right)$

