3. [12 points] Shown below is a graph of a function $r(t)$. The graph consists of a straight line between $t=0$ and $t=2$ and a quarter circle between $t=2$ and $t=3$.

Calculate the following using the graph and the properties of integrals.
a. [4 points] $-3 \int_{0}^{3}(2+r(t)) d t$.

Solution: We compute

$$
-3 \int_{0}^{3}(2+r(t)) d t=-6 \int_{0}^{3} 1 d t-3 \int_{0}^{3} r(t) d t=-18-3(1+\pi / 4)=-21-3 \pi / 4
$$

b. [4 points] $\int_{1 / 2}^{3 / 2} r^{\prime}(t) d t$.

Solution: By the fundamental theorem of calculus,

$$
\int_{1 / 2}^{3 / 2} r^{\prime}(t) d t=r(3 / 2)-r(1 / 2)=1-(-1)=2 .
$$

c. [4 points] The average value of r on the interval $[1,3]$.

Solution: The average value of r on the interval $[1,3]$ is

$$
\frac{1}{3-1} \int_{1}^{3} r(t) d t=\frac{1}{2}(1+1+\pi / 4)=1+\pi / 8
$$

