- 5. [12 points] A certain type of spherical melon has weight proportional to its volume as it grows. When the melon weighs 0.2 pounds, it has a volume of 36 cm³ and its weight is increasing at a rate of 0.1 pounds per day. [Note: The volume of a sphere is $V = \frac{4}{3}\pi r^3$.]
 - **a.** [3 points] Find $\frac{dV}{dt}$ when the melon weighs 0.2 pounds (t measured in days). Solution: When the melon weighs 0.2 pounds, it has a volume of 36 cm³, so if V = kw where V is volume, w is weight and k is a proportionality constant, then 36 = 0.2k giving k = 180. Now $\frac{dV}{dt} = k\frac{dw}{dt} = 180(0.1) = 18$ cm³ per day.

b. [5 points] Find the rate at which the radius of the melon is increasing when it weighs 0.2 pounds.

Solution: We are looking for $\frac{dr}{dt}$ when w = 0.2. Differentiating the equation for a sphere gives

$$\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}.$$

We know $36 = \frac{4}{3}\pi r^3$, so $r = \frac{3}{\pi^{1/3}}$. We also know that $\frac{dV}{dt} = 18$. Putting this together we have $18 - 4\pi \frac{9}{4\pi} \frac{dr}{dt}$

$$18 = 4\pi \frac{\sigma}{\pi^{2/3}} \frac{dt}{dt}$$

which means $\frac{dr}{dt} = \frac{1}{2\pi^{1/3}}$ cm per day.

c. [4 points] Use a local linearization to approximate the volume of the melon 36 hours after it weighs 0.2 pounds.

Solution: Since $\frac{dV}{dt} = 18 \text{ cm}^3$ per day and 36 hours is 1.5 days we know the melon will increase by approximately $18(1.5)=27 \text{ cm}^3$ in the 36 hours after it weighs 0.2 pounds. Since it is 36 cm³ at the time in question, the volume will be about 63 cm³ 36 hours later.