1. [14 points]

You are online playing the Facebook-based game, FarmVille, and you receive land with 5 stalks of corn on it. You decide that you would like to model the corn population on this patch of land using your calculus skills, so you recall that a good model for population growth is the logistic model

$$
P(t)=\frac{L}{1+A e^{-k t}} \quad L>0, \quad A>0, \quad k>0 .
$$

a. [5 points] Using the limit definition of the derivative, write an explicit expression for the derivative of the function $P(t)$ at $t=1$. Do not evaluate this expression.
Solution:

$$
P^{\prime}(1)=\lim _{h \rightarrow 0} \frac{\frac{L}{1+A e^{-k(1+h)}}-\frac{L}{1+A e^{-k(1)}}}{h}
$$

b. [5 points] Using the definition of the logistic model above, compute the following in terms of L, k, and A, showing your work or providing an explanation for each part:
i. [1 points] $\lim _{t \rightarrow \infty} P(t)=L$

Since the exponential piece is decreasing, it tends to 0 as $t \rightarrow \infty$. Then, the denominator goes to 1 , and the limit of $P(t)$ as $t \rightarrow \infty$ is L.
ii. [1 points] $\lim _{t \rightarrow-\infty} P(t)=0$

Since the exponential factor goes to infinity at $t \rightarrow-\infty$, the entire denominator goes to infinity, and the function tends to 0 .
iii. [1 points] $P(0)=\frac{L}{1+A}$

If we evaluate the function at 0 , the exponential piece equals 1 , so the denominator is just $1+A$, giving the answer above.
iv. $[2$ points $] P^{\prime}(0)=\frac{L A k}{(1+A)^{2}}$

First, we see the derivative is $P^{\prime}(t)=\frac{L A k e^{-k t}}{\left(1+A e^{-k t}\right)^{2}}$, so $P^{\prime}(0)=\frac{L A k}{(1+A)^{2}}$
c. [4 points] Your farmland satisfies the following conditions:

$$
P(0)=5, P^{\prime}(0)=1, \lim _{t \rightarrow \infty} P(t)=100 .
$$

Based on your answers in part (b), compute the correct values of L, k, and A for the logistic equation modeling corn population on your land.

Solution: Since $\lim _{t \rightarrow \infty} P(t)=L$, the last piece of given information implies that $L=100$.
Since $P(0)=\frac{L}{1+A}$ and $L=100$, we have from the given information

$$
\frac{100}{1+A}=5 \Rightarrow 20=1+A \Rightarrow A=19
$$

Finally, we use the last piece of information (combined with $L=100$ and $A=19$ to solve for k :

$$
P^{\prime}(0)=\frac{L A k}{(1+A)^{2}}=\frac{1900 k}{400}=1 \Rightarrow k=\frac{4}{19}
$$

$L=\ldots \quad 100 \quad 19=19 \quad \frac{4}{19}$

