6. [10 points] Consider a window the shape of which is a rectangle of height h surmounted by a triangle having a height T that is two times the width w of the rectangle (see the figure below which is not drawn to scale). If the total area of the window is 5 square feet, determine the dimensions of the window which minimize the perimeter.

Solution: From the statement of the problem, we have $T=2 w$ and adding the areas of the triangle and the rectangle, we have the total area of the window to be

$$
A=w h+0.5 T w=w h+w^{2}=5 .
$$

Solving for h, this gives $h=5 / w-w$. To calculate the perimeter of the window, we must calculate the length, ℓ, of the two sides of the triangle which lay on the perimeter. by the Pythagorean theorem, we get $\ell=\sqrt{17} w / 2$. Now the perimeter of the window is

$$
P=2 h+w+2 \ell=\frac{10}{w}-2 w+w+\sqrt{17} w=\frac{10}{w}-w+\sqrt{17} w .
$$

Setting the derivative of P equal to zero, we have

$$
P^{\prime}=\frac{-10}{w^{2}}-1+\sqrt{17} .
$$

Which means $w=\sqrt{\frac{10}{-1+\sqrt{17}}}$ is our only critical point. The second derivative of P is $20 w^{-3}$ which is positive for all $w>0$. This means P is concave up everywhere. Since we only have one critical point, it must be a global minimum. Therefore the dimensions which minimize the perimeter of the window are $w=\sqrt{\frac{10}{-1+\sqrt{17}}}$ feet, $T=2 \sqrt{\frac{10}{-1+\sqrt{17}}}$ feet, and $h=5 \sqrt{\frac{-1+\sqrt{17}}{10}}-$ $\sqrt{\frac{10}{-1+\sqrt{17}}}$ feet.

