7. [14 points] For positive $A$ and $B$, the force between two atoms is a function of the distance, $r$, between them:

$$
f(r)=-\frac{A}{r^{2}}+\frac{B}{r^{3}} \quad r>0
$$

a. [2 points] Find the zeroes of $f$ (in terms of $A$ and $B$ ).

Solution: Finding a common denominator for $f$, we have

$$
f(r)=\frac{-A r+B}{r^{3}} .
$$

This means $f(r)=0$ when the numerator is zero, so $r=\frac{B}{A}$ is the only zero of $f$.
b. [7 points] Find the coordinates of the critical points and inflection points of $f$ in terms of $A$ and $B$.
Solution: Seeking critical points, we take the derivative of $f(r)$ and set it equal to zero

$$
f^{\prime}(r)=\frac{2 A}{r^{3}}-\frac{3 B}{r^{4}}=\frac{2 A r-3 B}{r^{4}}=0 .
$$

Solving, we have that $r=\frac{3 B}{2 A}$ is our only critical point.
Now seeking inflection points, we take the second derivative of $f(r)$ and set it equal to zero.

$$
f^{\prime \prime}(r)=-\frac{6 A}{r^{4}}+\frac{12 B}{r^{5}}=\frac{12 B-6 A r}{r^{5}}=0 .
$$

Solving, we have that $r=\frac{2 B}{A}$ is a candidate for an inflection point. Now we must test to see whether this is an inflection point. We compute $f^{\prime \prime}\left(\frac{B}{A}\right)=\frac{6 B}{(B / A)^{5}}>0$ since $A$ and $B$ are both positive, and also, $f^{\prime \prime}\left(\frac{3 B}{A}\right)=\frac{-6 B}{(3 B / A)^{5}}<0$ since $A$ and $B$ are both positive. This means $f^{\prime \prime}$ changes sign from positive to negative across the point $r=\frac{2 B}{A}$, so it must be an inflection point.
c. [5 points] If $f$ has a local minimum at $(1,-2)$ find the values of $A$ and $B$. Using your values for $A$ and $B$, justify that $(1,-2)$ is a local minimum.

Solution: We already know our only critical point is $r=\frac{3 B}{2 A}$. If $f$ has a local minimum at $(1,-2)$, we must have that $1=r=\frac{3 B}{2 A}$, so that $2 A=3 B$. In addition, $-2=f(1)=$ $-A+B$. Solving these equations simultaneously, we have $A=6$ and $B=4$. We have already computed

$$
f^{\prime \prime}(r)=\frac{12 B-6 A r}{r^{5}}=\frac{48-36 r}{r^{5}} .
$$

So $f^{\prime \prime}(1)=48-36=12>0$ which means the critical point $(1,-2)$ is a local minimum since $f$ is concave up at this point.

