9. [10 points] You are sitting on a ship traveling at a constant speed of $6 \mathrm{ft} / \mathrm{sec}$, and you spot a white object due east moving parallel to the ship. After tracking the object through your telescope for 15 seconds, you identify it as the white whale. Let $W(t)$ denote the distance of the whale from its starting point in feet, and $S(t)$ denote the distance of the ship from its starting point in feet, with t the time in seconds since you saw the whale. You also note that at the end of the 15 seconds you were tracking the whale, you have turned your head $\pi / 12$ radians north to keep it in your sights.
a. [1 point] If initially the creature is 5280 ft (1 mile) from the ship due east, use the angle you have turned your head to find the distance $D(t)$ in feet between the ship and the creature at 15 seconds. The figure below should help you visualize the situation. Recall that, for right triangles, $\cos (\theta)$ is the ratio of the adjacent side to the hypotenuse.

Solution: Since $\cos (\pi / 12)=\frac{5280}{D(15)}$, we find that $D(15)=\frac{5280}{\cos (\pi / 12)} \approx 5466.258 \mathrm{ft}$.
b. [2 points] Let $\theta(t)$ give the angle you've turned your head after t seconds of tracking the whale. Write an equation $D(t)$ for the distance between the ship and the whale at time t (Hint: your answer may involve $\theta(t)$).

Solution: From the previous part, we know that the distance between the ship and the whale is 5280 divided by the cosine of the angle you've turned your head. Since $\theta(t)$ gives how far you've turned your head, we can find the distance at any time t using the function $D(t)=\frac{5280}{\cos (\theta(t))}$.
c. [3 points] If at precisely 15 seconds, you are turning your head at a rate of .01 radians per second, what is the instantaneous rate of change of the distance between the ship and the whale?
Solution: Since $D(t)=\frac{5280}{\cos (\theta(t))}$, we take the derivative with respect to t on both sides to get

$$
\frac{d D}{d t}=\frac{5280 \sin (\theta(t))}{\cos ^{2}(\theta(t))} \theta^{\prime}(t) .
$$

Since $\theta(15)=\pi / 12$ and we are given $\theta^{\prime}(15)=.01$, we get

$$
\left.\frac{d D}{d t}\right|_{t=15}=\frac{5280 \sin (\pi / 12)}{\cos ^{2}(\pi / 12)}(.01) \approx 14.6468 \mathrm{ft} / \mathrm{sec} .
$$

d. [4 points] What is the speed of the whale at $t=15$ seconds? Hint: Use the Pythagorean theorem.

Solution: The right triangle in the figure above has hypotenuse $D(t)$ and sides with length $D(t)$ and $W(t)-S(t)$, so the Pythagorean theorem states

$$
D(t)^{2}=5280^{2}+(W(t)-S(t))^{2} .
$$

If we take the t derivative of both sides, we get

$$
2 D(t) \frac{d D}{d t}=2(W(t)-S(t))\left(\frac{d W}{d t}-\frac{d S}{d t}\right)
$$

To find $\left.\frac{d W}{d t}\right|_{t=15}$, we will need $D(15)=5466.258$ and $\left.\frac{d D}{d t}\right|_{t=15}=14.6468$. We also need to find $W(15)-S(15)$, but since this is one side of the right triangle, we can use tangent to find this distance: $W(15)-S(15)=5280 \tan (\pi / 12) \approx 1414.7717$. Finally, we also need to know $\frac{d S}{d t}$, but in the description of the problem it says that ship is traveling at a constant speed of $6 \mathrm{ft} / \mathrm{sec}$. Plugging all of this information into our equation we have

$$
2(5466.258)(14.6468)=2(1414.7717)\left(\frac{d W}{d t}-6\right) \Rightarrow 56.5909=\left.\frac{d W}{d t}\right|_{t=15}-6 .
$$

Therefore, $\left.\frac{d W}{d t}\right|_{t=15} \approx 62.5909 \mathrm{ft} / \mathrm{sec}$

