10. [12 points] Byron is blowing up a balloon. The rate at which he is blowing air into the balloon at time t is $b(t)$ cubic inches per second, graphed below. When $t=0$, the balloon is empty.

a. [2 points] How much air has Byron blown into the balloon after 3 seconds?

Solution:

$$
\int_{0}^{3} b(t) d t=10+20+5=35,
$$

so after 3 seconds he has blown 35 cubic inches of air into the balloon.

After 3 seconds, the balloon springs a leak, and the air leaks out at a constant rate of r cubic inches per second.
b. [4 points] How much air is in the balloon 8 seconds after Byron started blowing it up? Your answer will involve r.
Solution:

$$
\int_{0}^{8} b(t) d t-5 r=35+9+27+4.5-5 r=75.5-5 r,
$$

so after 8 seconds, there are $75.5-5 r$ cubic inches of air in the balloon.
c. [3 points] Let $B(t)$ be the amount of air in the balloon after t seconds. Suppose $B(t)$ has a critical point at $t=8.25$. Find r.

Solution: $\quad B^{\prime}(8.25)=0$, which means $b(8.25)-r=0$. We know $b(8.25)=\frac{29}{4}$, so $r=\frac{29}{4}=7.25$ cubic inches per second.
d. [3 points] Is the critical point at $t=8.25$ a local maximum, local minimum, or neither? Briefly explain.

Solution: At $t=8.25, b(t)$ changes from being less than r to greater than r, so $B^{\prime}(t)$ goes from negative to positive. Thus, by the first derivative test, the critical point is a local minimum.

