4. [14 points] Consider the family of functions

$$
y=x^{2 b}+a x^{b}
$$

where a and b are nonzero constants.
a. [4 points] Calculate y^{\prime}.

Solution: $\quad y^{\prime}=2 b x^{2 b-1}+a b x^{b-1}$
b. [4 points] Calculate $y^{\prime \prime}$.

Solution: $\quad y^{\prime \prime}=2 b(2 b-1) x^{2 b-2}+a b(b-1) x^{b-2}$
c. [6 points] Find values of a and b so that the resulting function has an inflection point at $(x, y)=(1,-4)$. Justify that $(1,-4)$ is an inflection point of the function with the values of a and b that you found.
Solution: The point $(1,-4)$ must be on the graph of our function, so

$$
-4=1^{2 b}+a \cdot 1^{b}=1+a
$$

Thus $a=-5$.
$(1,-4)$ must be an inflection point, so we plug $x=1$ and $a=-5$ into our second derivative and set it equal to zero:

$$
0=2 b(2 b-1) \cdot 1^{2 b-2}-5 b(b-1) \cdot 1^{b-2}=4 b^{2}-2 b-5 b^{2}+5 b=-b^{2}+3 b=-b(b-1)
$$

So $b=0$ or 3 , but b is nonzero so $b=3$.
To check that $(1,-4)$ is indeed and inflection point, we check that $y^{\prime \prime}$ changes sign at $x=1$. Plugging in the values of a and b we found, we get

$$
y^{\prime \prime}=6(5) x^{4}-5(3)(2) x^{2}=30 x^{4}-30 x^{2}=30 x^{2}\left(x^{2}-1\right)
$$

The term $30 x^{2}$ is always positive and $x^{2}-1$ changes sign from negative to positive at $x=1$. Therefore, $(1,-4)$ is an inflection point of the function.

