7. [11 points] Consider the continuous function

$$
f(x)= \begin{cases}x \cdot 2^{-x} & 1 \leq x<3 \\ \frac{1}{2-x}+\frac{11}{8} & 3 \leq x \leq 5\end{cases}
$$

Note that the domain of f is $[1,5]$.
a. [7 points] Find the x-values of the critical points of f.

Solution: To find the critical points, we first take the derivatives of the two functions and set them equal to zero.

$$
\frac{d}{d x} x 2^{-x}=2^{-x}-x \ln 2 \cdot 2^{-x}=2^{-x}(1-x \ln 2)=0
$$

2^{-x} is never 0 so $1=x \ln 2$ so $x=\frac{1}{\ln 2} \approx 1.44$, which is between 1 and 3 , so it is a critical point.

$$
\frac{d}{d x}\left(\frac{1}{2-x}+\frac{11}{8}\right)=\frac{1}{(2-x)^{2}}
$$

which is never 0 , but undefined at 2 , which is not between 3 and 5 and therefore not a critical point.
To check if there is a critical point at $x=3$, we can either graph the function on a calculator and see that there is a sharp corner there, or we can check and see that the derivatives of the two functions are not equal there:

$$
2^{-3}(1-3 \ln 2) \approx-0.13 \neq 1=\frac{1}{(2-3)^{2}}
$$

Thus, the critical points are at $x=\frac{1}{\ln 2}$ and $x=3$.
b. [4 points] Find the y-values of the global maximum and global minimum of f if they exist, or explain why they don't exist.
Solution: Since this is a closed interval, we can just test the critical points and endpoints. $f(1)=1 \cdot 2^{-1}=0.5$
$f\left(\frac{1}{\ln 2}\right)=\frac{1}{\ln 2} \cdot 2^{-\frac{1}{\ln 2}} \approx 0.53$
$f(3)=3 \cdot 2^{-3}=\frac{3}{8}=0.375$
$f(5)=\frac{1}{2-5}+\frac{11}{8}=\frac{25}{24} \approx 1.042$
So the global maximum is $\frac{25}{24} \approx 1.042$ and the global minimum is $\frac{3}{8}=0.375$.

